Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические формальдегида

    Технологическая схема производства формальдегида окислительным дегидрированием метанола с системой автоматизации реакционного узла представлена на рис. Х1У-4. [c.324]

    Основной технологический процесс протекает в трех реакторах при температуре около 400° С, где предварительно нагретые пары диметилдиоксана смешиваются с перегретым водяным паром- Парогазовая смесь при контакте с катализатором превращается в контактный газ, состоящий из формальдегида, изобутилена, изопрена и других продуктов. [c.53]


    Конверсия изобутилена и формальдегида за проход 85—90%. Избирательность синтеза ДМД по формальдегиду 80%, а по изобутилену 68—70% (более 10% изобутилена расходуется на образование триметилкарбинола (ТМК). Из верха и низа реактора 3 выводятся соответственно органическая и водная фазы реакционной жидкости, которые перерабатывают на независимых технологических линиях. [c.704]

    Стереорегулярный изопреновый каучук (СКИ) также обладает высокой прочностью, эластичностью, клейкостью, низким теплообразованием и хорошим сопротивлением к старению. По эластичности СКИ превосходит СКД и приближается к натуральному каучуку. Развитие производства СКИ прежде всего зависит от наличия ресурсов дешевого сырья для синтеза изопрена. Этими источниками сырья являются изопентан, изобутилен и формальдегид, а также пропилен. Наиболее просто технологически синтез изопрена осуществлялся путем дегидрирования изопентана, поэтому на основе последнего будет организовано промышленное производство изопрена. [c.340]

    Технологическая схема производства формальдегида приведена на рис. 1Х-3 [ПО]. [c.263]

    Технологический процесс производства полиформальдегида по непрерывному методу состоит из следующих стадий подготовка формалина, получение и очистка газообразного формальдегида, полимеризация формальдегида, ацетилирование полиформальдегида, промывка и сушка полиформальдегида, стабилизация и грануляция. [c.48]

    Технологический процесс- производства такого катионита (рис. 60) состоит из следующих стадий -подготовка сырья, сульфирование фенола, поликонденсация л-фенол сульфокислоты с формальдегидом, охлаждение олигомера и дробление, окончательная поликонденсация, дробление и рассев, промывка [c.90]

    Все описанные выше технологические схемы производства присадок основываются, на использовании установок периодического действия, которые, как уже говорилось, не могут быть в достаточной степени автоматизированы и механизированы, В последние годы наряду с синтезом новых, высокоэффективных присадок к маслам ведутся большие работы по усовершенствованию действующих процессов производства присадок. В частности, разрабатываются непрерывные схемы, являющиеся более эффективными и экономически выгодными. Особое внимание уделяется разработке непрерывных схем для тех стадий или узлов производства, которые являются общими для процессов получения многих присадок например, алкилирование ароматических углеводородов и их производных олефинами, конденсация алкилфенолов с формальдегидом и другими соединениями, нейтрализация и сушка различных продуктов и отделение механических примесей, сульфирование масел серным ангидридом, отгонка растворителей и непрореагировавших продуктов, а также утилизация отходов производства присадок. [c.248]


    Технологическая схема производства формальдегида окислительным дегидрированием метанола изображена па рис. 139. Метанол, содержащий 10—12% воды, из напорного бака I непрерывно поступает в испаритель 2. Туда же через распределительное устройство подают воздух, очищенный от пыли и других загрязнений. Воздух барботирует через слой водного метанола в нижней части испарителя и насыщается его парами. В 1 л образующейся 1 аро-воздушной смеси должно содержаться 0,5 г метанола. Поддержание такого состава смеси очень важно для обеспечения взрывобезопасности и нормального протекания процесса. Поэтому работа испарительной системы полностью автоматизирована поддерживают постоянные уровень жидкости в испарителе, ее темпера-туру (48—50" С) и скорость подачи воздуха, благодаря чему обеспечиваются необходимые температурный режим и степень конверсии в адиабатическом реакторе. [c.476]

Рис. ХУ-19. Технологическая схема комбинированного реактора для получения формальдегида. Рис. ХУ-19. <a href="/info/562664">Технологическая схема комбинированного</a> реактора для получения формальдегида.
Рис. ХУ-20. Сопоставление технологических режимов трубчатого и комбинированного реакторов для получения формальдегида Рис. ХУ-20. <a href="/info/1102614">Сопоставление технологических</a> режимов трубчатого и <a href="/info/51082">комбинированного реакторов</a> для получения формальдегида
    Приведем несколько примеров. Так, при окислении метанола в формальдегид в комбинированном реакторе значительное влияние на технологический режим в трубчатой части аппарата оказывают неоднородности температуры хладоагента и активности катализатора . Это справедливо для всех трубчатых реакторов при осуществлении в них сильно экзотермических процессов. В адиабатической части аппарата температура на выходе из слоя катализатора и избирательность процесса зависят главным образом от неоднородностей начальной степени превращения метанола перед слоем и активности катализатора (особенно от соотношения констант полезной и побочной реакций). Очень чувствительны к неравномерному распределению температуры и концентраций контактные аппараты с адиабатическими слоями неподвижного катализатора и промежуточным отводом тепла, предназначенные для окисления двуокиси серы в производстве серной кислоты. Значительное влияние на достижение высоких конечных степеней превращения оказывают неоднородности в последних слоях этих реакторов. Сказанное выше справедливо и для других процессов, когда необходимо приблизиться к равновесию или достигнуть высокой степени превращения. [c.504]

    Железо-молибденовый катализатор мало чувствителен к качеству метилового спирта и к каталитическим ядам. Срок службы катализатора в трубчатой части реактора — 1,5 года, в адиабатической секции — до 7 лет. Однако его производительность существенно ниже, чем металлического, и не превышает 700- 00 кг 100%-ного формальдегида на 1 м катализатора в 1 ч. Недостатками процесса являются более высокие удельные капитальные затраты, повышенный расход электроэнергии и более сложная технологическая схема, чем при производстве формалина на серебряном катализаторе. [c.203]

    Технологическая схема получения неопентилгликоля изображена на рис. 10.8. Технический формалин (37%-ный) подается в колонну I. С верха колонны при температуре 64—66 С отводится метанол в виде товарного продукта. Кубовый остаток из колонны 1 при 100 С подается на верхнюю тарелку колонны 2, предназначенной для извлечения остаточного метанола. С верха колонны 2 при температуре 96—98 °С отводится продукт, содержащий 10—11% метанола, который возвращается в куб колонны 1. Кубовый продукт колонны 2, содержащий не более 0,1% метанола, охлаждается до 60—65 °С и подается в середину вакуумной колонны 3 (верх колонны — 50—100, низ — 400 мм рт. ст.), которая предназначена для концентрирования формальдегида. С верха колонны 3 при температуре 42—45 °С отводится 9—10%-ный водный раствор формальдегида, часть которого подается на орошение колонны 3, а остальной — в колонну 4 для извлечения остаточного формальдегида. Кубовый продукт колонны 3 представляет собой 70%-ный формальдегид, который после смешения с изобутило-вым спиртом подается на стадию конденсации в реактор 5. В колонне 4 раствор формальдегида в воде укрепляется от 9—10% до 37—38% (масс.). Пары формальдегида и воды конденсируются, и жидкий продукт направляется на питание колонны 2. Кубовый остаток колонны 4 отводится на очистку. [c.340]


    Пример. Технологический блок испарения метанола и парофазного окисления его воздухом в формальдегид в контактном аппарате при / = 700 °С и р = 0,035 МПа. Физико-химические характеристики обращающихся веществ и соответствующие им значения индексов концентрационный предел воспламенения метанола 28,7%, /г=1, /д = 5 нижний предел воспламенения метанола 6%, /г = 2,/д = 6 минимальная энергия зажигания 0,14 МДж, /г = 3. /д = 7 температура среды 700 °С /г = 4, /д = 6 давление 0,035 МПа, /г не учитывается, так как /д = 0 плотность паров метанола по отнощению к воздуху 1,1, /г=6, /д=6 объемное электрическое сопротивление 4,5-10 Ом-м, /г=7, /д = 4. [c.253]

    Технологические свойства и применение формальдегида [c.294]

    Вследствие этого и, следовательно, малого выхода формальдегида технологический процесс прямого окисления метана становится экономически невыгодным. Основная масса формальдегида производится поэтому из метанола по двум методам окислительным дегидрированием и окислением. [c.295]

    На рис. 13.1 представлена технологическая схема производства формальдегида окислительным дегидрированием метанола. [c.296]

    Ниже рассмотрены технологические процессы производства бутадиена-1,3 одностадийным дегидрированием н-бутана и производства изопрена из изобутилена и формальдегида (диокса-новым методом), дающие представление об особенностях каждого из этих процессов. [c.325]

Рис. 15.7. Технологическая схема производства изопрена конденсацией изобутилена с формальдегидом Рис. 15.7. <a href="/info/66466">Технологическая схема производства</a> изопрена конденсацией изобутилена с формальдегидом
    Мольное соотношение фенола и формальдегида составляет от 1 0,78 до 1 0,86. В качестве катализатора используется соляная кислота в количестве 0,2—1,5 мае. долей на 100 мае. долей фенола, что обеспечивает pH среды в пределах 1,5—1,8. На рис. 18.4 представлена технологическая схема производства новолачных олигомеров непрерывным способом с использованием реактора поликонденсации колонного типа. [c.400]

    Технологический процесс приготовления суперпластификатора слагается из следующих стадий сульфирование нафталина 85—92%-ной серной кислотой при 130-150°С дополнительная выдержка сульфомассы при 150°С, сочетающаяся с отдувкой непрореагировавшего нафталина отдувка нафталина на специальной колонне от сульфомассы конденсация продуктов сульфирования с водным раствором формальдегида (формалином) нейтрализация продукта конденсации щелочью. [c.342]

    Задачей исследования было определение степени превращения гипохлоритных соединений в хлориды и основных технологических параметров процессов обезвреживания гипохлоритных сточных вод с применением формальдегида. [c.131]

    Для прессовочных материалов чаще нужны сухие фенолформальдегидные смолы. Изготовление сухих резольных смол, как уже было сказано, требует больших предосторожностей. Производство сухих новолачных смол технологически проще, так как исключается опасность их желатиниЗации во время конденсации и сушки. Процесс их получения сходен с процессом получения резольных смол. Отличие заключается в рецептуре (на 1 мо ь фенола 0,6—0,8 моль формальдегида, катализатор— соляная кислота) и в том, что высушенная смола подвергается термической обработке при 115—120° С с целью повышения температуры размягчения. [c.204]

    Формальдегид впервые синтезирован А. М. Бутлеровым в 1859 г. из йодистого метилена [123]. В 1860 г. Гофман [124] открыл реакцию дегидрирования метанола над платиной в формальдегид в дальнейшем эта реакция легла в основу промышленных методов получения формальдегида. Научно обоснованное производство формальдегида начинается с работ акад. Е. И. Орлова [125], под руководством которого в 1909—1910 гг. был сооружен первый в России формалиновый завод. К началу второй мировой войны производство формальдегида из метанола во всех крупнейших промышленных странах получило законченное технологическое оформление. [c.302]

Рис. v.29. Принципиальная технологическая схема процесса гомогенного окисления пропана молекулярным кислородом в формальдегид, ацетальдегид, метанол и другие продукты. Рис. v.29. <a href="/info/1480765">Принципиальная технологическая схема процесса</a> <a href="/info/330686">гомогенного окисления</a> пропана <a href="/info/54717">молекулярным кислородом</a> в формальдегид, ацетальдегид, метанол и другие продукты.
    Так, на одном из нефтехимических предприятий технологический трубопровод, предназначенный для транспортирования сернокислого формалина, проходил через камеру приточной вентиляции. В период эксплуатации под воздействием агрессивной среды в медном трубопроводе, уложенном в стальной кожух, образовалась трещина, через которую формальдегид стал проникать в вентиляционную камеру, а затем с приточным врздухом — в производственные помещения, что привело к сильной загазованности воздущной среды и аварийной остановке цеха. [c.188]

    Оптамнзация промышленного процесса получения формальдегида окяс-.1ите.1ьным дегидрированием метанола на серебряном катализаторе с учетом самоорганизации [86]. Процесс самоорганизации, рассматриваемый на уровне химико-технологической системы, состоит в проявлении кооперативного действия мод и упорядочения, определяемого параметрами порядка [86], при этом образуются диссипативные структуры. Устойчивые состояния соответствуют некоторым точкам в фазовом пространстве координат системы (технологические режимы, конструктивные характеристики аппаратов). Эти состояния будем называть центрами самоорганизации. [c.312]

    Многие из внедренных в промышленность присадок получаются на основе алкилфенолов, сульфокислот, фосфорорганических соединений. Некоторые технологические стадии для синтезов различных присадок являются общими. Например, алкилирование фенола олефинами и конденсация фенола или алкилфенола с формальдегидом протекают в производстве всех присадок, получаемых конденсацией алкилфенолов с формальдегидом обработка различных продуктов сульфидом фосфора (V) (фосфоросернение) —общий процесс при получении многих присадок, содержащих серу и [c.221]

    В некоторых производствах образование взрывоопасных концентраций вообще исключается. Однако в боль-шлнстве химических производств возможность образования взрывоопасных концентраций определяется е мим характером производства. В ряде производств крупно-тоннажного синтеза заданный продукт получают окис-лением веществ кислородом воздуха. Например, формальдегид получают окислением метанола нитрил акриловой кислоты — окислением пропилена в присутствии аммиака окись азота — окислением аммиака. В таких случаях неизбежно образование смесей взрывчатых веществ с кислородом, поэтому технологический процесс разрабатывается так, чтобы концентрации этих смесей были ниже нижнего или выше верхнего концентрационных пределов взрываемости. [c.143]

    Технология двухстадийного синтеза изопрена. Упрощенная технологическая схема получения изопрена из изобутиленовой фракции и формальдегида изображена на рис. 161. Первую стадию проводят в двух трубчатых реакторах 1 и 2, охлаждаемых водой. Изо-бутиленовая фракция и разбавленный рециркулятом водный раствор 4ормальдегида движутся в них противотоком более тяжелый, водный слой опускается вниз, а легкий, углеводородный поднимается вверх, причем диспергирование жидкостей позволяет создать [c.557]

    Получение диметилвинилкарбинола. В 1969—1972 гг. в СССР был разработан и испытан в полупромышленном масштабе метод получения диметилвинилкарбинола — ценного сырья для производства витаминов А и Е — из промежуточных продуктов синтеза изопрена из изобутилена и формальдегида (см. раздел 2.1). Технологическая схема процесса представлена на рис. 3.17. Водный раствор изобутенилкарбинола, выделенный азеотропной ректификацией с водой из фракции возвратного 4,4-диметил-1,3-диоксана. подается в куб реакционно-отгонной колонны 1, куда загружен катализатор (серная или щавелевая кислота). В кубе поддерживается кипение реакционной смеси (температура в парах 87—88 °С). Из верхней части колонны 1 непрерывно отбирается смесь водного азеотропа диметилвинилкарбинола н изопрена с примесью непревращен-ного изобутенилкарбинола. Для обеспечения полного расслаивания дистиллята и повышения степени осушки органической фазы в линию отбираемых продуктов подается дополнительное количество изопрена, отгоняемого в колонне 3. В отстойнике 2 смесь расслаивается. Нижний водный слой возвращают в колонну 1 в виде флегмы. Органическая фаза поступает в систему ректификационных колонн [c.97]

    Технологическая схема синтеза метриола приведена на рис. 10.6. Формальдегид, пропионовый альдегид и водный раствор NaOH поступают в реактор с мешалкой I, где при температуре 30—50 °С происходит образование метриола. Из реактора смесь поступает в экстракционную колонну 2, куда подается и растворитель — этилацетат и изопропиловый спирт. Раствор метриола из колонны направляется на кристаллизацию в аппарат 3. Кристаллизация проводится при температуре 17—20 °С. Кристаллический метриол после отделения от растворителя на фильтре 4 подвергается сушке в аппарате 5 и собирается как товарный продукт. Растворитель после фильтра отгоняется на ректификационной колонне 6 от высококипящих побочных продуктов. [c.337]

    Технологическая схема синтеза этриола изображена на рис. 10.7. Обез-метаноленный формальдегид, водный раствор NaOH и масляный альдегид подаются в реактор 1. Реактор представляет собой аппарат с диффузором (выполненным в виде змеевика) и пропеллерной мешалкой. Конденсацию альдегидов осуществляют при температуре 30—50 °С. Тепло реакции отводится хладагентом, подаваемым в рубашку и змеевик. Продукты конденсации из реактора поступают в нейтрализатор 2, где избыток щелочи нейтрализуется серной кислотой до pH = 64-7. Нейтрализованный раствор продуктов конденсации стекает в отстойник 3, где жидкие продукты отделяются от шлама. Шлам из отстойника подается на центрифугу 4 и далее направляется в отвал. Фугат после центрифуги возвращается в отстойник. Водный раствор продуктов конденсации из отстойника 3 подается на насадочную колонну 5, с верха которой отбирается смесь формальдегида, метанола и воды, которая направляется на обезметаноливание. Кубовая жидкость колонны 5 подается в верхнюю часть экстракционной колонны [c.338]

    Технологическая схема синтеза ДМД с применением высококонцентрированного формальдегида изображена на рис. 11.8. Свежий формалин подвергается обезметаноливанию на колонне 1. Из куба колонны отбирается продукт, содержащий 40—45% формальдегида, который направляется на узел концентрирования 2. Сюда же подается аналогичный по составу погон колонны 3 рекуперации формальдегида со стадии разложения ДМД. Поток [c.375]

    В производстве триметилолпропана (этриола) сырьем являются н-масляный альдегид и формальдегид. Для того чтобы обеспечить высокий выход товарного продукта, целесообразно применять формальдегид, содержащий не более 0,1% (масс.) метанола. Поскольку выпускаемый по действующим стандартам формальдегид содержит значительно больше метанола, в технологический регламент на проектирование установки по производству этриола были включены данные для проектирования узла обезметаноливания формальдегида. [c.70]

    Технологический процесс прямого окисления отличается от ранее описанного процесса окислительного дегидрирования высокой степенью конверсии метанола (0,99), селективностью по формальдегиду, достигающей 96% и высокой экзотермич-ностью. Поэтому для окисления метанола в нем используют трубчатые реакторы с интенсивным охлаждением циркулирующей в межтрубном пространстве водой или другими хладоаген-тами, К достоинствам метода относятся также низкие расходные коэффициенты по сырью и энергии. На рис. 13.2 представлена технологическая схема производства формальдегида прямым окислением метанола. [c.297]

    Исходя из этого была предложена технологическая схема производства формальдегида непосредственно из метанола-сырца, в которой совмещены стадии каталитической очистки сырья и получения формальдегида. Подобная технология, предложенная в нашей стране в 1978—79 гг., позволяет, не меняя принци1шально технологической схемы процесса, не только использовать вместо метанола-ректификата сырец, но и утилизировать содержащиеся в последнем побочные продукты, снизить расход пара на ректификацию и, в целом, повысить технико-экономические показатели производства без снижения качества конечного целевого продукта. [c.299]

    Сырьем в производстве изопрена методом конденсации изобутилена с формальдегидом служит чистый изобутилен или изобутилен-изобутановая фракция, полученная каталитическим дегидрированием изобзггана. На рис. 15.7 представлена технологическая схема производства изопрена из изобутилена и формальдегида. [c.334]

Рис.У.ЗО. Принципиальная технологическая схема производства акролеина альдольной конденсацией ацетальдегида и формальдегида. Рис.У.ЗО. <a href="/info/1480765">Принципиальная технологическая схема</a> <a href="/info/872529">производства акролеина</a> <a href="/info/108540">альдольной конденсацией ацетальдегида</a> и формальдегида.
    На рис. XI.20 приведена примерная технологическая схема производства нентаэритрита, организованного фирмой Геркулес в Луизиане, п1тат Миссури. Завод представляет собой комбинат, производящий формальдегид гидрированием метанола, который получают из природного газа и водяного пара. Полученный формальдегид поступает на производство пентаэритрита [134, 135]. Пентаэритрит применяют в производстве алкидных смол, для получеипя пластификаторов, придающих пластифицированным плен- [c.723]


Смотреть страницы где упоминается термин Технологические формальдегида: [c.182]    [c.436]    [c.13]    [c.584]    [c.298]    [c.402]    [c.14]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.658 ]




ПОИСК







© 2025 chem21.info Реклама на сайте