Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк калия

    В ничтожных количествах в нефти найдены хлор, йод, фосфор, мышьяк, калий, натрий, кальций, магний. [c.76]

    Многие элементы (сера, фосфор, мышьяк, калий, натрий, магний, алюминий и др.) в атмосфере фтора горят с водородом фтор соединяется со взрывом. [c.218]

    При высоких температурах вопрос об основном стандартном состоянии элемента во многих случаях существенно усложняется и выбор его становится еще более условным. Пары серы, селена, фосфора, мышьяка, натрия, калия и некоторых других элементов обладают сложным молекулярным составом, который меняется с температурой. Так, в парах серы содержатся в равновесии молекулы 82, 5б, 83 и другие относительное содержание их зависит от температуры и давления. В подобных случаях чаще всего целесообразно принять в качестве основного стандартного состояния элемента газ, состоящий из молекул одинакового состава. Так, в настоящее время в качестве основного состояния для серы и фосфора иногда принимают газ с двухатомными молекулами, а для лития, натрия и калия — газ с одноатомными молекулами. При наличии необходимых данных расчет свойств реального газа не представляет затруднений. [c.24]


    Окислы натрия (0,39—3,60%), калия (0,11—2,96%) и титана (0,23—2,77%) содержатся в золе в малых количествах. В состав золы также в небольших количествах входят окислы фосфора, мышьяка и 60 других элементов. [c.99]

    Водный раствор карбоната калия + окись мышьяка [c.151]

    Этот потенциал несколько выше, чем потенциал для системы б, и поэтому в сильнокислой среде пятивалентный мышьяк выделяет йод из йодистого калия. При более высокой кислотности (6—10 н. НС1) можно определять мышьяковую кислоту по количеству выделенного йода. [c.357]

    Бромноватокислый калий иногда применяется для титрования грех-валентного мышьяка или сурьмы, особенно когда они получаются в с льно [c.393]

    В смеси, содержащей соединения трех- и пятивалентного мышьяка, можно определить каждый из них йодометрическим методом. В сильнокислой среде в присутствии йодистого калия пятивалентный мышьяк выделяет эквивалентное количество йода, который титруют рабочим раствором серноватистокислого натрия. В другой пробе раствора в нейтральной среде титруют трехвалентный мышьяк рабочим раствором йода. [c.402]

    Применение уксусной кислоты не обязательно во многих прописях рекомендуется брать серную кислоту. Однако при недостаточном опыте работающего при этом иногда создается слишком высокая кислотность, в связи с чем может выделиться йод. Это объясняется действием пятивалентного мышьяка, а также трехвалентного железа, так как фторидный комплекс последнего разрушается сильными кислотами. Отсюда требование ГОСТа — применять именно уксусную кислоту. Возможно также каталитическое действие меди, и особенно окислов азота на реакцию между йодидом и кислородом воздуха. Поэтому следует обратить особое внимание на указанные в тексте предосторожности в отношении удаления азотной кислоты и окислов азота, а также, по возможности, на устранение соприкосновения с кислородом воздуха после прибавления йодистого калия. [c.414]

    Типичным примером броматометрических определений является титрование As(III), Sb(III) и Sn(II). Можно предложить общий метод определения сильных окислителей раствор окислителя, например хлора, гипохлорита натрия, хлората калия, пероксида водорода, пероксодисульфата калия, бромата калия восстанавливают оксидом мышьяка(III) и избыток его оттитровывают раствором бромата. [c.176]


    Образование растворимых комплексов. Во многих случаях малорастворимые осадки растворяются при добавлении электролитов, имеющих одно- или разноименные с осадком ионы, если катион или анион осадка (чаще катион) образует растворимый комплекс с добавленным электролитом. Эта реакция происходит, например, между хлоридом или бромидом серебра и аммиаком, иодидом серебра и цианидом калия, сульфидом мышьяка и гидросульфидом аммония. Поскольку комплексы, образующиеся в результате этих реакций, обычно очень устойчивы, на кривой растворимости не наблюдается ожидаемого минимума. [c.195]

    Титр перманганата калия можно установить также по оксиду мышьяка (П1) или металлическому железу. Использование для установки титра металлического железа особенно целесообразно, если в дальнейшем предполагается перманганатометрическое определение этого элемента. [c.273]

    Свободный хлор тоже проявляет очень высокую химическую активность, хотя и меньшую, чем фтор. Он непосредственно взаимодействует со всеми простыми веществами, за исключением кислорода, азота и благородных газов. Такие неметаллы, как фосфор, мышьяк, сурьма и кремний, уже при низкой температуре реагируют с хлором при этом выделяется большое количество теплоты. Энергично протекает взаимодействие хлора с активными металлами — натрием, калием, магнием и др. [c.480]

    Теплоемкость трехокиси мышьяка при t = —213,0 равна 5,839, и при t = —130,2 равна 13,80 кал/(моль-град). Какова структура этого соединения  [c.42]

    Азот. . , Алюминий Аргон. . Барий. Бериллий. Бор. . , Бром. . Ванадий. Висмут. . Водород. Вольфрам Галлий. , Гелий. . Железо, Золото. . Индий. . Иод. . . Иридий Кадмий. Калий. . Кальций, Кислород Кобальт Кремний Криптон. Ксенон. . Лантан. . Литий. . Магний Марганец Медь. . . Молибден Мышьяк. Натрий. . Неон. . . Никель. , Олово. Осмий. . Палладий Платина Радий. Радон. Рений. Родий. . Ртуть. . Рубидий,  [c.285]

    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]

    Очень хорошие результаты дает метод тонкослойной хроматографии при разделении трудноразделяемых элементов (например, натрия и калия кальция, стронция и бария, железа, никеля и кобальта, редкоземельных элементов, селена и теллура), при разделении элементов в разновалентных состояниях хром (III) и хром (VI), мышьяк (III) и мышьяк (V), сурьма (III) и сурьма (V), ртуть (I) и ртуть (II) [143], [c.186]

    Для обнаружения мышьяка, сурьмы и олова при их совместном присутствии предложен метод осадочной хроматографии на бумаге, пропитанной иодистым калием и тиосульфатом [160]. Хроматограмма образуется в горячем парафине, после чего бумажную полоску извлекают и дают ей остыть. Зафиксированные хроматограммы можно хранить долгое время. [c.209]

    При анализе мышьяка и трехокиси его мышьяк отделяют отгонкой в виде галогенида на стадии разложения материалов и последующей экстракцией четыреххлористым углеродом из 9 п. соляной кислоты, содержащей иодид калия. [c.141]

    Раствор переводят в мерную колбу емкостью 25 мл, доводят объем раствора тем же раствором кислоты до метки. Отбирают 10 мл, переносят в колбу для отгонки и отгоняют мышьяк при нагревании до тех пор, пока в колбе останется 1 мл жидкости добавляют еще 3 мл 6 п. соляной кислоты и отгонку продолжают. Эту операцию повторяют. (Летучие соединения мышьяка поглощают раствором едкого натра.) Оставшийся раствор ( 1 мл) переводят в делительную воронку емкостью 25 мл, колбу споласкивают 5 мл 1,7%-ного раствора иодида калия в соляной кислоте и присоединяют к содержимому в воронке. Затем приливают 10 мл четыреххлористого углерода и содержимое воронки встряхивают в течение 2 мин. По расслаивании жидкостей органический слой сливают, а водный переводят в кварцевую чашку и упаривают досуха на плитке со слабым нагревом. [c.142]

    В качестве меченого атома был использован As с периодом полураспада 26,8 ч. Путем растворения радиоактивной трехокиси мышьяка в щелочи готовился раствор арсенита. Изучаем мые растворы получали из смеси радиоактивного арсенита, не-> радиоактивной мышьяковой кислоты, соляной кислоты и иодистого калия. Степень обмена за данный промежуток времени определяли после замораживания равновесия добавлением воды и избытка аммиака к пробе, отобранной из системы. Арсе-нат-ион осаждали в виде арсената магний-аммония, который затем прокаливали. Радиоактивность полученного порошка определили с помощью электроскопа. Специальными опытами было показано, что прямого обмена между As и As в условиях реакции не происходит. Из скоростей обмена, измеренных при различных концентрациях реагирующих веществ в условиях равновесия с использованием зависимости скорости от концентрации, найденной для реакции восстановления мышьяковой кислоты в условиях, далеких от равновесия, было рассчитано значение константы скорости 2 обратной реакции. Эти [c.376]


    Полный элементный анализ нефтяной золы позволяет установить в ней присутствие серы, кислорода, азота, ванадия, фосфора, калия, никеля, йода, кремния, кальция, железа, магния, натрия, алюминия, марганца, свинца, серебра, меди, титана, урана, олова и мышьяка (элементы расположены в порядке их встречаемости ряд в этом отношении не может считаться твердо установленным р ]. (Комментарий Н. Б. Вассоевича). [c.105]

    Пример УП1-3. В газе, находящемся под давлением 20 атм и содержащем 18,7% N2, 56,3% Нз и 25% СО2, количество последней должно быть снижено до 0,5%. Абсорбцию проводят в колонне с насадкой из колец Рашига размеро.ч 38 мм при температуре 60 °С, которую можно считать для всей колонны постоянной. Абсорбентом служит смесь КгСОа, КНСО и арсенита калия Аз (ОН)гОК, содержащегося в каждом литре раствора в количестве 5 г-атомов калия и 1 г-атом мышьяка. В орошающей колонну жидкости на каждый 1 г-атом калия приходится по 0,44 моль СО - [c.192]

    Наиболее активным катализатором является платина, однако она вышла из употребления вследствие дороговизны и легкой отравляемости примесями обжигового газа, особенно мышьяком. Оксид железа дешевый, не отравляется мышьяком, но при обычном составе газа (7% SO2 и 11% О2) он проявляет каталитическую активность только выше 625°С, т. е. когда Jip<70%, и поэтому применялся лишь для начального окисления SO2 до достижения Хр 50—60%. Ванадиевый катализатор менее активен, чем платиновый, но дешевле и отравляется соединениями мышьяка в несколько тысяч раз меньше, чем платина он оказался наиболее рациональным, и только он применяется в производстве серной кислоты в СССР. Ванадиевая контактная масса содержит в среднем 7% V2O5 активаторами являются оксиды щелочных металлов, обычно применяют активатор К2О носителем служат пористые алюмосиликаты или диоксид кремния. Обычные ванадиевые контактные массы представляют собой пористые гранулы, таблетки или кольца. При катализе оксид калия превращается в K2S2O7, а контактная масса в общем представляет собой пористый носитель, поверхность пор которого смочена пленкой раствора пяти-оксида ванадия в жидком пиросульфате калия. [c.129]

    Иод. . Иридий Игтербий Иттрий. Кадмий Калий. Калифопннй Кальций Кислород Кобальт Кремний Криптон Ксенон. Кюрий. Лантан. Литий. Лютеций Магний. Марганец Медь. . Менделевий Молибден Мышьяк Натрий, Неодим Неон. . Нептуний Никель, Ниобий. Нобелий Олово. Осмий. Палладий Платина Плутоний Полоний. Празеодим Прометий [c.18]

    Оаюв№ тяжвлые медь, свинец, никель, цинк, олово Малые тяже/ше висмут, мышьяк, сурьма, ртуть, кадмий, ко шьт Лепале алюминий, магний, титан, натрий, калий, барий, кальций, стронций [c.5]

    При анализе мышьяковистокислой меди определяют йодометрическим методом как медь, так и мышьяк. В кислом растворе медь реагирует с йодистым калием, выделяя эквивалентное количество йода, который титруют серноватистокисльш натрием. В другой пробе раствора связывают медь в комплекс посредством виннокислого натрия и титруют анион АзО рабочим раствором йода. [c.402]

    По появлению брома в растворе, который может быть обнаружен по обесцвечиванию метилового оранжевого (необратимое окисление инцикатора), устанавливают конечную точку титрования. Препараты бромата калия могут быть получены в чистом виде, растворы его устойчивы. Применяют фомат калия для определения сурьмы(1П), мышьяка(111), олова(11) и цр. [c.142]

    В среде безводной уксусной кислоты при использовании в качестве титрантов брома, хромовой кислоты, перманганата калия или трихлорида титана проводят титрование мышьяка, сурьмы, ртути, селена, железа, титана, таллия, бромидов, иодидов, иода и пероксида водорода, а также органических соединений, таких, как резорцин, гидрохинон, бренцкатехин, тетра-хл оргидрохинон, п-хинон, тетрахлорхинон, л-аминофенол или дифениламин. Точку эквивалентности определяют потенциометрическим методом. [c.348]

    При титровании целого ряда веществ в уксусной кислоте можно использовать также такие сравнительно новые титранты, как монохлорид иода или тетраацетат свинца. Определение иодида в присутствии хлорида и бромида проводят титрованием в среде уксусной кислоты раствором СЮг в качестве титранта. В серии окислительно-восстановип ельных титрований в среде уксусной кислоты некоторых окислителей (бром, хромовая кислота, перманганат калия, монохлорид иода, бромат калия и иодат калия) были апробированы в качестве титрантов такие соединения, как дитионат натрия, ацетат ванадила, три-хлорид мышьяка или хлорид олова(II). [c.348]

    Получение иодида мышьяка (И1). К 5—8 каплям арсенита натрия добавьте 0,5 мл концентрированного раствора иодида калия, подкисленного I—2 мл коцентрирован-ной соляной кислоты. Наблюдайте образование обильного осадка. [c.188]

    Сурьма (III) и мышьяк (III) могут быть определены в одном растворе без предварительного разделения. Сначала титруют оба восстановителя вместе, а затем сурьму (V) в этом растворе восстанавливают металлической ртутью до Sb (III) и снова титруют броматом калия. Мышьяк (V) ртутью не восстанавливается, поэтому второму титрованию не мешает. Прямым взаимодействием с броматом определяют олово (II), медь (I), таллий (I), пероксид водорода, гидразин и другие соединения. Интересно бро-матометрическое определение висмута, основанное на реакции окисления металлической меди в солянокислом растворе  [c.288]

    Состав нормальных галидов определяется окислительным числом относительно электроположительного элемента Э и выражается формулой ЭГ , где п — окислительное число элемента Э. Свойства простых галидов определяются характером связанных с галогеном элемеитов. Галиды химически активных металлов обладают свойствами типичных солей. По мере уменьшения активности металлов, а особенно у неметаллических элементов свойства галидов постепенно изменяются от типично солевых (галиды натрия, калия, кальция) к кислотообразующим (пентагалиды фосфора, мышьяка, сурьмы). [c.58]

    Примечание. Этот метод приготовления эталонных растворов используют при анализе всех объектов (мышьяка и его соединений, сурьмы, галлия и его соединений), в которых для получения синей формы фосфорномолибдеповой гетерополикислоты применяют аскорбиновую кислоту с тартратом калием антимопилом. [c.142]

    Определение мышьяка производят по восстановленной форме молибденовомышьяковой кислоты, используя в качестве восстановителя аскорбиновую кислоту, содержащую ионы висмута (III) и тартрат калия антимонила. [c.147]


Смотреть страницы где упоминается термин Мышьяк калия: [c.123]    [c.88]    [c.147]    [c.49]    [c.134]    [c.12]    [c.504]    [c.124]    [c.125]    [c.61]    [c.228]    [c.623]    [c.414]    [c.18]    [c.17]   
Фотометрический анализ методы определения неметаллов (1974) -- [ c.171 ]




ПОИСК







© 2025 chem21.info Реклама на сайте