Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк определение в виде Af As

    Для определения мышьяка в виде мышьяковомолибденовой сини в отсутствие мешающих элементов можно рекомендовать следующую методику. [c.59]

    Для повышения чувствительности определения мышьяка в виде мышьяковомолибденовой сини и устранения мешающего влияния многих элементов в ряде случаев экстрагируют образовавшуюся мышьяковомолибденовую синь кислородсодержащими растворителями [47, 429, 773, 964, 990]. [c.59]


    Для экстракционно-фотометрического определения мышьяка в виде мышьяковомолибденовой сини рекомендуется следующая методика [273]. [c.60]

    Интерес представляют также косвенные полярографические методы. Так, в работе [1029] описан метод, основанный на предварительном осаждении мышьяка в виде арсената уранила и по-следуюш,ем полярографическом определении избытка урана(У1) в растворе. Метод позволяет определять мышьяк в растворах с его содержанием 5—100 мкг/мл. [c.85]

    Для разложения железных руд с последующим фотометрическим определением мышьяка в виде мышьяковомолибденовой сини рекомендуется [1108] метод термической отгонки мышьяковистого ангидрида. [c.149]

    Для определения мышьяка в силикатных породах фотометрическим методом в виде мышьяковомолибденовой сини может использоваться описанный выше (стр. 148) метод ш,елочного плавления в сочетании с последующей отгонкой мышьяка в виде трихлорида. Полученный дистиллят выпаривают с азотной кислотой досуха и далее определяют мышьяк, как выше описано. [c.153]

    Для определения мышьяка в чугуне, железе, стали наибольшее применение в настоящее время находит метод, включающий фотометрирование мышьяка в виде мышьяковомолибденовой сини [48, 253, 401, 429, 541, 666, 698, 773, 785, 789, 790, 885, 917, 943, 949, 952, 996, 1131—1133, 1147]. Метод подробно описан в предыдущем разделе (см. Определение мышьяка в железных рудах ). Ошибка определения мышьяка этим методом обычно лежит в пределах [c.159]

    Для определения мышьяка в вольфраме, трехокиси вольфрама, вольфрамовой кислоте, ферровольфраме и в вольфрамовых рудах используются различные методы. По одному методу [536] для определения мышьяка в вольфрамовой кислоте и вольфрамовом ангидриде выделяют мышьяк в виде арсина и измеряют интенсивность окраски, образуюш,ейся при взаимодействии арсина с пири- [c.160]

    Для определения малых количеств мышьяка в металлическом вольфраме и трехокиси вольфрама может быть использован титриметрический метод [736]. Метод включает выделение мышьяка в виде арсина, разложение его с образованием мышьякового зеркала, которое растворяют в растворе 1С], затем оттитровывают избыток окислителя раствором иодата калия. Метод позволяет определять до 1-10 % Аз с ошибкой 2—3%. [c.161]

    Для определения мышьяка в кальции, а также в других щелочноземельных металлах и магнии предложен метод, включающий выделение мышьяка в виде арсина восстановлением губчатым оловом в солянокислом растворе, разложение арсина с образованием зеркала металлического мышьяка, которое затем растворяют в растворе хлорида иода и оттитровывают иод, выделяющийся при этом в эквивалентном количестве, раствором иодата калия. Метод позволяет определять до 1-10 % As с ошибкой 2—3% [736]. [c.164]


    Для определения мышьяка в меди и ее сплавах предложено большое число различных методов. Наиболее многочисленную группу составляют фотометрические методы. Большинство из них основано на определении мышьяка в виде мышьяковомолибденовой сини. Некоторые характеристики фотометрических методов определения мышьяка в меди, ее сплавах, солях и концентратах приведены в табл. И. [c.165]

    Более быстрым спектрофотометрическим методом определения мышьяка с.ледует считать метод, основанный на выделении мышьяка в виде арсина из сернокислого раствора, поглощении арсина пиридиновым раствором диэтилдитиокарбамината серебра и фотометрировании поглотительного раствора [7991. [c.172]

    Заслуживают внимания методы определения мышьяка с применением атомно-абсорбционной спектрофотометрии [603, 840], отличающиеся чрезвычайно высокой чувствительностью. Анализируемый материал минерализуют, выделяют мышьяк в виде арсина, затем измеряют поглощение света полученной смеси газов при прохождении их через нагреваемую кювету. [c.179]

    В другом аналогичном методе [798] для выделения мышьяка в виде арсина в качестве восстановителя используют борогидрид натрия, с применением которого значительно снижается поправка на холостой опыт. Этот метод использован для автоматического определения мышьяка в природных и сточных водах. [c.185]

    Результаты раздельного определения мышьяка в некоторых рудах проверены по общему содержанию мышьяка, определенному броматометрическим визуальным методом с предварительной отгонкой всего мышьяка в виде трехвалентного и методом добавок. [c.270]

    Федосов М. Микроопределение мышьяка в виде арсина. Зав. лаб., 1947, 13. № 9. с. 1138—1139. Библ. 7 назв. 5951 Федосов М. В. Освобождение от арсенатов при колориметрическом определении фосфатов. Зав. лаб., 1950, 16, № 11, с. 1395— 1396. 5952 [c.227]

    Определение мышьяка в виде трисульфида мышьяка AsjS,, является одним из наиболее надежных гравиметрических методов его определения [74]. [c.36]

    Определение в виде AsjSg [74]. Для определения мышьяка в виде AsjSg необходимо, чтобы весь мышьяк был трехвалентным. Если в растворе имеется мышьяк(У), то его предварительно восстанавливают до мышьяка(П1) обработкой раствора сульфитом или бисульфитом натрия, иодидами щелочных металлов или аммония. [c.37]

    Sn, Sb, d, Zn, Pb, Bi, TI, In, Ga и многие другие элементы не осаждаются сероводородом в указанных условиях (9—10 N НС1) и определению мышьяка в виде AsoSg и AsjSj пе Д1ешают. Мешают ртуть, окислители и нитраты, а также медь, если присутствует в больших количествах, и сурьма в присутствии меди. [c.38]

    А дА804 (растворимость 7,8-10 молъ/л) [614, 642]. Ввиду того, что большинство элементов мешает определению мышьяка в видо арсенита и арсената серебра, этот метод пригоден практически только для определения мышьяка в чистых растворах. [c.39]

    В сторону образования более окрашенной 3-формы, но и вследствие экстракционного концентрирования. Однако, несмотря на это, фотометрическое определение мышьяка в виде молибдомышьяковой гетерополикислоты довольно сильно ограничивается малой чувствительностью метода. [c.54]

    Применяют еще один вариант экстракционно-фотометрического определения мышьяка в виде мышьяковомолибденовой сини, в котором экстрагируют желтую мынгьяковомолибденовую кислоту кислородсодержащими органическими растворителями н в полученном экстракте восстанавливают ее до мышьяковомолибденовой сини [158, 302, 459, 599, 972, 980, ИЗО]. [c.60]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Для определения мышьяка в минеральных и сточных водах используется косвенный метод, включающий осаждение мышьяка в виде арсената уранила и последующее полярографирование избытка ypana(VI) в растворе [1029]. [c.87]


    Предложен [733] газометрический метод определения мышьяка в виде арсената, основанный на его взаимодействии с хлоргидра-том фенилгидразина с выделением на 1 г-ион AsO 0,5 г-моля N2, Для определения AsO 8—10 мг анализируемого вещества помещают в реакционный сосуд, вводят 100 мг хлоргидрата фенилгидразина, вытесняют из реакционного сосуда воздух с помощью СО2, вводят 3—5 мл 10 М НС1 и нагревают в течение 10 мин. Выделяющийся азот собирают в нитрометре над 50%-ным раствором КОН я по объему полученного азота рассчитывают содержание мышьяка в пробе. [c.92]

    Один из таких методов основан на осаждении мышьяка в виде арсената серебра избытком AgNOg и измерении атомного поглощения серебра, содержащегося в фильтрате [641]. При использовании ацетилено-воздушного пламени в качестве атомизатора и фотометрировании линии 328 нм метод позволяет определять до мкгА мл. Здесь, кроме более высокой чувствительности атомно-абсорбционного определения серебра по сравнению с мышьяком (примерно в 25 раз), имеет значение и тот факт, что на один атом мышьяка при образовании осадка арсената серебра расходуется три атома серебра. [c.103]

    Отделение мышьяка в виде арсина с поглощением его фильтровальной бумагой, пропитанной бромидом ртути, используется для высокочувствительного определения мышьяка рентгенофлуоресцентным методом в различных материалах и с высокой точностью [765] (см, раздел Рентгенофлуоресцептный метод ). Ряд методов качественного обнаруя ения также непосредственно связан с выделением мышьяка в виде арсина (см, гл. III). В связи с этим в указанных разделах подробно изложены соответствующие модификации метода отделения мышьяка отгонкой в виде арсина. [c.144]

    Присутствие в анализируемом веществе соединений, которые в условиях выделения мышьяка в виде арсина могут образовать сероводород, фосфин, стибин и гидрид германия, поглощающихся вместе с арсином поглотительными растворами, снижают эффективность отделения. В ряде случаев непосредственное использование арсина, содержащего указанные примеси, для определения мышьяка становится невозможным. Сероводород обычно задер- [c.145]

    Для определения мышьяка в фосфорной кислоте предложен метод, основанный на выделении мышьяка в виде арсина, поглощении арсина 0,01 N раствором иода и измерении оптической плотности поглотительного раствора. Величина оптической плотности обратно пропорциональна содержанию мышьяка в пробе. Получаемые результаты более воспроизводимы, чем результаты, получаемые по методу Гутцайта [940, 941]. [c.175]

    В едком натре малые содержания мышьяка (0,1—0,8 мкг в пробе) рекомендуется определять методом [407], включающим выделение мышьяка в виде арсина металлическим цинком в солянокислом растворе, поглощение арсина бромиднортутной бумагой и измерение интенсивности отраженного света образовавшимся окрашенным пятном. Метод пригоден для определения мышьяка в солях щелочных и щелочноземельных металлов. [c.176]

    Мышьяк в виде мышьяковомолибденовой кислоты экстрагируют бутанолом. К экстракту прибавляют этанольный раствор двухлористого олова и содержание мышьяка определяют фотометрированием возникшей мьнпьяковомолибденовой сини при 740 ммк. Методика предложена для определения мышьяка в картофеле [141]. [c.240]

    Разработаны и с большой пользой применяются и фотометрические методы, основанные на использовании реагентов, известных ранее или предложенных в других странах. Так, И. П. Алимарин и Л. П. Подвальная ввели в обиход важный метод определения ниобия по реакции с роданидом, И. А. Блюм, Д. П. Щербов и другие создали много интересных методов с использованием катионных красителей — кристаллического фиолетового, бриллиантового зеленого и аналогичных. Предложенный В. П. Живописцевым ди-антипирилметап А. А. Минин применил для фотометрического определения титана — этот способ широко известен. Р. П. Алексеев создал широко применяемый метод определения кремния, фосфора и мышьяка в виде гетерополисоединений. [c.60]

    Перегонка мышьяка не представляет затруднений и происходит полностью, если мышьяк был восстановлен до трехвалентного и анализируемый раствор не содержит такого большого количества суспендированных веществ, чтобы это могло помешать отгонке. Результаты определения мышьяка (в присутствии сурьмы) получаются несколько повышенными, особенно если определение заканчивается объемным методом. Источниками ошибок являются сернистый ангидрид, не полностью удаленный из раствора перед началом перегонки, и перешедшая в небольших количествах в дистиллят сурьма. Присутствие сернистого ангидрида нежелательно и тогда, когда определение заканчивается весовым методом (осаждением мышьяка в виде АзаЗа), так как ЗОа реагирует с сероводородом, образуя серу, которую Надо затем удалять. Затруднений, вызываемых сернистым ангидридом, можно избежать кипячением разбавленного анализируемого раствора после восстановления, но до прибавления соляной кислоты. Сурьма всегда переходит в дистиллят, если ее количество значительно превышает содержание мышьяка и если не применяются приспособления для фракционированной перегонки. Если пользуются обычным перегонным аппаратом, сурьму отделяют вторичной перегонкой. [c.97]

    Охфеделение превращением мышьяка в арсенат серебра и титрованием методом Фольгарда. Осаждение мышьяка (V) в виде арсената серебра, растворение последнего в азотной кислоте и титрование серебра в полученном растворе методом Фольгарда является очень хорошим споеобом определения мышьяка, особенно пригодным для применения после отгонки мышьяка е соляной кислотой и отделения его в виде сульфида. Германий и те малые количества сурьмы и олова, которые могут в этом случае сопровождать мышьяк, определению не мешают. Этот метод не может применяться для анализа веществ неизвестного качественного состава, так как имеется болыАе число анионов, также осаждающихся в виде солей серебра, например фосфат-, ванадат-, молибДат- и хро мат-йоны. Следует избегать большого избытка аммонийных и натриевых солей. [c.310]

    Из известных методов отделения сурьмы важнейшие основаны на свойствах ее сульфида. Так, сурьма отделяется от элементов, не входяш,их в группу сероводорода, осаждением сероводородом в кислом растворе стр. 83) и от элементов группы меди — растворением сульфида сурьмы в ш елочном растворе (стр. 87). Далее, сурьму можно отделить от мышьяка — осаждением очень мало растворимого сульфида последнего в сильно солянокислом растворе (стр. 305) от олова и германия — осаждением сероводородом в растворе, содержаш,ем фтористоводородную кислоту стр. 89), и от олова — осаждением сероводородом в ш авелевокислом или виннокислом растворе (стр. 89). Из всех этих методов отделения наиболее важным является отделение мышьяка в сильно солянокислом растворе, так как мышьяк во всех методах мешает определению сурьМы. Мышьяк можно отделить как в виде сульфида мышьяка (III), так и в виде сульфида мышьяка (V) (стр. 309), и отделение может быть проведено прямо в кислом растворе анализируемого вещества или поспе совместного осаждения сурьмы и мышьяка в виде сульфидов и растворения их в кислоте. [c.321]

    Трехокись мышьяка легко восстанавливается до металлического мышьяка. Так, если нагревать AsgOgв маленькой трубке для прокаливания с углем или с цианидом калия, то мышьяк, образовавшийся в результате восстановления, осаждается в более холодной части трубки в виде черного зеркального кольца (мышьяковое зеркало, проба на мышьяк по Берцелиусу). Из растворов трехокиси мышьяка в большом количестве концентрированной соляной кислоты хлористое олово [хлорид олова(П)] осаждает металлический мышьяк в виде черно-бурого осадка. Эта реакция лежит в основе определения мышьяка по Беттендорфу. Б кислом растворе водород в момент выделения восстанавливает трехокись мышьяка до мышьяковистого водорода. Окислители окисляют AS2O3 до мышьяковой кислоты. Окисление идет легче всего в присутствии щелочи. [c.704]

    Для определения малых количеств мышьяка применяют колориметрический метод, основанный на получении синего мышьяково-молибденового комплекса. Описан [15] чувствительный метод определения мышьяка в сере, основанный на сжигании ее, улавливании мышьяка азотной кислотой, отгонке из кислого раствора АзНз, поглощении его слабым раствором иода и последующем фотометрическом определении в виде синего молибденового комплекса, восстановление до которого проводили Sn b. Позднее [42] в качестве восстановителя был применен гидразин-сульфат, что позволило повысить чувствительность метода до 10 %. Недостатком колориметрического метода является необходимость отделения фосфора во избежание искажения результатов. Для определения мышьяка в сере используется отделение мышьяка в виде арсина и определение последнего по Гутцайту [4]. В большинстве случаев мышьяк определяют улавливанием фильтровальной бумагой, пропитанной раствором хлорида или бромида ртути. Применяя принцип фильтрования газа через горизонтально закрепленные бумажки, в значительной степени удается повысить чувствительность метода. Для повышения чувствительности и точности определения мышьяка в сере с успехом может быть использовано конечное определение арсина в виде окрашенного соединения с диэтилдитиокарбаминатом серебра в пиридиновом растворе [43]. Чувствительность метода 2- 10 доопределение хлора в сере проводят нефелометрически в водной вытяжке, полученной при длительном кипячении серы в бидистилляте [4] или при взбалтывании в течение 2 час. на механической мешалке [44]. Для устранения мешающего действия следов коллоидной и сульфидной (НгЗ) серы проводят окисление [4], либо осаждение в виде Ag2S. Чувствительность метода 5-10- %. Показана возможность применения колориметрического определения хлора методом, основанным на связывании иона хлора двухвалентной ртутью в малодиссоциированное соединение и цветной реакции ртути с дифенилкарбазоном с чувствительностью [c.424]

    Определенный интерес представляет, например, ДХДЭЭ (хлорекс), недавно использованный для концентрирования. Этот растворитель применяли для сброса сурьмы из концентрированной НС1 при химико-спектральном [505, 657, 1808] и активационном [1485] определении в ней микроэлементов. Железо(1И) удаляли из концентрированных растворов НС1 при анализе железа высокой чистоты химико-спектральным [1809] и активационным [757] методами, при выделении Со из облученной дейтронами железной мишени [1810]. Индий экстрагировали из 7—8 М НБг при химико-спектральном анализе этого металла на примеси Ag, С(1, Ве, Мп, Со, Сн и других элементов [911], при анализе арсенида индия после отгонки мышьяка в виде ЛзВгд [912]. Удаление галлия из хлоридных растворов иснользовали при радиоактивационном анализе арсенида галлия [880, 1811], при химико-спектраль ном [655] и активационном [656] анализе металлического галлия. В другой работе, анализируя антимонид галлия, авторы экстрагировали галлий из бромидного раствора [689]. Дихлордиэтиловый эфир использовали и при определении примесей в таллии. В случае химико-спектрального анализа таллия высокой чистоты [1812] макроэлемент извлекали из бромидного раствора в водной фазе определяли Ag, А1, Ва, В1, Со, С<1, Сг, Сн, Ре, Оа, 1п, Mg и другие элементы с чувствительностью 1-10 — 2-10 %. Удаляли таллий хлорексом и при активационном определении примесей [1813]. [c.309]

    Мышьяк. В присутствии не очень малых кэличеств мышьяка (в виде мышьякового колчедана) при обработке пробы руды перед паяльнэй трубкой на древесном угле в восстановительном пламени появляется запах чеснока. Этот способ дает отрицательные результаты, если содержание мышьяка очень незначительно или если последний присутствует в виде мышьяковокислых солей, как, например, в обожженных рудах тогда следует применять способ, указанный для количественного определения мышьяка (стр. 44). [c.6]

    Определение мышьяка лучше всего производить из отдельной большой навески. Минерал обрабатывают азотной кислотой при нагревании, удаляют выпариванием ббльшую часть кислоты, разбавляют водой и осаждают свинец прибавлением серной кислоты. В фильтрате после отделения сернокислого свинца осаждают небольшой остаток свинца и мышьяк пропусканием сероводорода после предварительного восстановления сернистой кислотой. Отфильтрованный осадок обрабатывают сернистым натрием, затем фильтруют и в фильтрате осаждают мышьяк в виде сернистого, подкисляя раствор тиосоли соляной кислотой. Осадок сернистого мышьяка переводят путем растворения в аммиачном растворе перекиси водорода в мышьяковую кислоту и определяют в виде пиромышьяковокислого магния, как указано в т. II, ч. 2, вып. 1, стр. 229. [c.505]


Смотреть страницы где упоминается термин Мышьяк определение в виде Af As: [c.30]    [c.38]    [c.66]    [c.131]    [c.133]    [c.149]    [c.174]    [c.182]    [c.691]    [c.280]    [c.460]   
Техника неорганического микроанализа (1951) -- [ c.68 ]




ПОИСК







© 2025 chem21.info Реклама на сайте