Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь определение в алюминии

    Титрование с ксиленоловым оранжевым описано для определения алюминия в сталях [712], в титановых сплавах [1173], ферротитане [63], магниевых сплавах [429], алюминиевой бронзе [260], в сплавах никеля с алюминием [263], в бинарных сплавах алюминия с медью [345], с цирконием [434], железом [345], с титаном [665], в тройных сплавах с цирконием и никелем [295], в бокситах, нефелиновых рудах и концентратах [16, 71, 558, 877], каолине [147, 680], в различных минералах, рудах и горных породах [23, 71, 166, 229, [c.69]


    Определению алюминия фторидным потенциометрическим методом мешают Ее (111), Ti (IV), Си (И). Не мешают Mg, Са, Мп,, Zn, Ni, d, W, Mo (VI), r (111), Fe (11), Zr, Ti (111), V, Nb, Si. Влияние многих элементов можно устранить восстановлением металлическим цинком, при этом Си, Sb, As и Sn осаждаются. Ее (111),. Ti (IV), Мо (VI) восстанавливаются и не мешают определению 195]. Предложено также устранять влияние Ti (IV) восстановлением амальгамой [202]. Железо и некоторые другие мешающие элементы, предлагалось отделять щелочью [136, 412], медь отделяют электролизом [64]. [c.87]

    Со, N1, Ре, Т и V с солохромовым фиолетовым образуют комплексы и мешают определению алюминия. Медь образует нерастворимый комплекс. Фториды, цитраты и оксалаты уменьшают высоту волны. Комплекс алюминия с солохромовым фиолетовым КЗ при обычной температуре образуется медленно, при нагревании до 60" С — в течение 2 мин. [739]. При содержании 0,01 — 1,5 шг А1/50 Л1Л калибровочный график прямолинейный и проходит через начало координат [739]. Чувствительность метода [c.144]

    Для определения алюминия в промежуточных продуктах титанового производства (расплавы хлоридов, возгоны и др.) предложен комплексометрический метод, заключающийся в прямом титровании с индикатором ПАН в присутствии комплексоната меди после удаления мешающих элементов экстрагированием их купферонатов хлороформом [430]. [c.203]

    Определение алюминия в меди и медных сплавах [c.214]

    Весовой бензоатный метод определения алюминия после отделения основной массы меди тиогликолевой кислотой дает удовлетворительные результаты, но он более сложен, чем описанный выше оксихинолиновый [5211. [c.215]

    При определении алюминия алюминоном в сплавах меди с оловом и цинком ( пушечный металл ) многие мешающие элементы предварительно удаляют электролизом на ртутном катоде [1086]. [c.216]

    Бензоилфенилгидроксиламин (БФГА) предложен как реактив для количественного определения весовым путем ряда катионов [1], в том числе меди, железа, алюминия и титана [2], циркония [3], скандия [4], ниобия [5 6], тантала [7] и др. [c.11]

    Чем объяснить, что для изготовления электрических проводов используют медь или алюминий, а для изоляции этих проводов применяют стекло, керамику или резину В чем заключаются основные отличия между веществами, хорошо проводящими электрический ток и не проводящими его Эти и многие подобные вопросы получают разъяснение на основе изучения свойств электрической частицы вещества, называемой электроном. Определение электрона и описание его свойств дано в гл. 4. [c.37]


    Применяют для гравиметрического определения алюминия, титана, меди, железа и свинца, а также для фотометрических определений ванадия, галлия, индия, титана и циркония. [c.137]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Хромазурол S — темно-красные кристаллы (порошок). Хо-юшо растворим в воде и этаноле, нерастворим в эфире. Наименьшая растворимость при 1,2—2 М соляной кислоты. Применяют для дифференциальной спектрофотометрии AF+, а также в качестве комплексометрического индикатора для определения алюминия (П1), меди (И), железа (П1), магния (И) и циркония (IV). Фотометрически определяют А1 + при pH 5,6—5,8. Чувствительность реакции на алюминий составляет 0,006 мкг А1 + в 1 мл раствора. [c.228]

    Свойства. Темно-красное кристаллическое вещество. При- меняют для определения алюминия при pH 4—5. Переход j окраски от фиолетовой к оранжевой. Определяют медь при pH 6—6,5 переход окраски от синей к зеленой железо j [c.278]

    Определению циркония не мешает присутствие до 12% олова, 5% меди и алюминия, 2% молибдена и 1% железа. [c.110]

    Вольфрам и молибден. Общие требования к методам химического и спектрального анализа Ниобий. Спектральный метод определения вольфрама и молибдена Ниобий. Спектральный метод определения тантала Тантал и его окись. Спектральный метод определения алюминия, ванадия, железа, кальция, кремния, магния марганца, меди, никеля, ниобия, олова, титана, хрома и циркония [c.821]

    Титан губчатый. Спектральный метод определения ванадия, марганца, хрома, меди, циркония, алюминии молибдена, олова, магния и вольфрама Титан губчатый. Спектральный метод оиределения кремния, железа и никеля [c.821]

    Таллий. Метод спектрального определения алюминия, железа, меди, никеля, олова, серебра и свинца Таллий. Метод спектрального определения кадмия и цинка Галлий. Атомно-эмиссионный метод определения кадмия, свинца и цинка [c.822]

    Галлий. Атомно-эмиссионный метод определения алюминия, висмута, железа, кремния, магния, марганца, меди, никеля, олова, свинца, хрома и цинка [c.822]

    Феррованадий. Методы определения кремния Феррованадий. Методы определения фосфора Феррованадий. Методы определения марганца Феррованадий. Методы определения общего алюминия Феррованадий. Методы определения хрома Феррованадий. Методы определения меди Феррованадий. Методы определения мышьяка Ферросилиций. Методы определения кремния Ферросилиций. Метод определения фосфора Ферросилиций. Методы определения марганца Ферросилиций. Методы определения хрома Ферросилиций. Методы определения общего алюминия Ферросилиций. Методы определения кальция Ферросилиций. Методы определения титана Ферробор. Методы определения бора Ферробор. Методы определения кремния Ферробор. Метод определения фосфора Ферробор. Методы определения марганца Ферробор. Методы определения меди Ферробор. Методы определения алюминия Ферротитан. Метод определения титана [c.566]

    Ферротитан. Метод определения фосфора Ферротитан. Методы определения меди Ферротитан. Метод определения алюминия Ферротитан. Метод определения кремния Ферротитан. Методы определения ванадия Ферротитан. Методы определения молибдена Ферротитан. Методы определения олова Ферротитан. Методы определения циркония Ферротитан. Методы определения хрома Ферротитан. Методы определения марганца Ферровольфрам. Методы определения вольфрама Ферровольфрам. Метод определения фосфора Ферровольфрам. Метод определения кремния Ферровольфрам. Метод определения марганца Ферровольфрам. Метод определения алюминия Ферровольфрам. Метод определения молибдена Ферровольфрам. Методы определения меди Ферровольфрам. Метод определения свинца [c.566]

    Бронзы безоловянные. Метод спектрального анализа по окисным стандартным образцам с фотографической регистрацией спектра Бронзы безоловянные. Метод рентгеноспектрального флуоресцентного определения алюминия Бронзы жаропрочные. Метод определения меди Бронзы жаропрочные. Методы определения кремния Бронзы жаропрочные. Методы определения хрома Бронзы жаропрочные. Метод определения фосфора Бронзы жаропрочные. Методы определения железа Бронзы жаропрочные. Метод определения никеля Бронзы жаропрочные. Метод определения свинца Бронзы жаропрочные. Методы определения циркония Бронзы жаропрочные. Метод определения кобальта Бронзы жаропрочные. Методы определения титана Бронзы жаропрочные. Определение хрома, никеля, кобальта, железа, цинка, магния и титана методом атомно-абсорбционной спектрометрии [c.576]


    Титан губчатый. Спектральный метод определения ванадия, марганца, хрома, меди, циркония, алюминия, молибдена, олова, магния и вольфрама [c.579]

    При проведении реакции в кислой среде определению железа не мешают также значительные количества меди и алюминия, так как комплексные соединения ионов этих элементов менее устойчивы, чем моносульфосалицилат железа(III). [c.492]

    Максимум поглощения моиосульфосалицилата железа (III) находится при 510 нм (рис. 1.27), а молярный коэффициент поглощения равен 1,8-10 . Определению ионов железа (III) в виде сульфосалицилатного комплекса не мешают элементы, образующие бесцветные комплексы, например In< Ga " Zr ), Hf( >, если, конечно, добавлен большой избыток реагента. Сульфосалицилатные комплексы меди и алюминия в кислой среде менее устойчивы, чем комплексы железа (III), поэтому они не мешают определению. Данный метод позволяет определять железо(III) в присутствии ацетатов, боратов, рода-нидов и фосфатов, так как комплексы железа с перечисленными выше анионами менее устойчивы, чем сульфосалицилатные комплексы. Ионы фтора мешают определению железа (III) в виде моиосульфосалицилата в щелочной среде, где образуется очень устойчивый трисульфосалнцилат, ионы не мешают. [c.71]

    Отделение мешающих элементов. Практическое значение имеют методы определения алюминия, в присутствии железа и титана, разделение алюминия и магния, алюминия и меди и др. Для определения алю , иния в первом случае предварительно осаждают железо оксихинолином из сильно уксуснокислого раствора (20% СН3СООН), содержащего винную кислоту. Винную кислоту приливают для того, чтобы связать титан в ком плекс и предотвратить гидролиз его солей. После отделения железа осаждают оксихинолином титан. Осадок оксихинолината титана образуется только в слабокислом растворе при рН>5, однако в этом случае может также осаждаться и алюминий. Для удержания алюминия в растворе туда приливают раствор щавелевокислого аммония (или малоновой кислоты). К фильтрату после осаждения титана приливают избыток гидроокиси аммония (до щелочной реакции) и осаждают алюминии оксихинолином. Этим методом можно определить все три элемента при их совместном присутствии. [c.185]

    Интерметаллические соединения однородны по составу и имеют четко определенные свойства и состав. Например, медь и алюминий образуют соединение СиА] , известное под названием дюралюминий . Интерметаллические соединения редко используются в чистом виде они часто распределены в гетерогенньк сплавах, подобно тому как цементит распределен в некоторьк сталях. [c.365]

    Элементы, образующие в слабокислой среде устойчивые 1 0милек-сонаты, не мешают определению (медь, никель, алюминий и др.). При определении бериллия в сплавах иа ниобиевой основе ниобий маскируют тартратом, а другие ионы — комплексоном III. В этих условиях окрашенное соединение с алюминоном дают только иоиы бериллия. [c.372]

    Определению железа при проведении реакции в кислой среде не мешают медь и алюминий, так как соответствующие комплексные соединения этих элементов менее устойчивы, чем комплексное соединение сульфосалицилата железа (III). Но соединение моносульфосалицилата железа меиее устойчиво, чем трисульфосалицилат железа. В кислой среде исключается возможность определения железа при наличии фтор-иона, в то время как фториды не мешают определению железа в виде трисульфосалицилата в щелочной среде. [c.153]

    Алфоиси и Бусси [521] при определении алюминия в бронзах и латунях предварительно осаждают медь в виде тиогликолята. Объем осадка при этом большой, поэтому после осаждения лучше раствор с осадком разбавить в мерной колбе до метки и для определения алюминия отфильтровать только часть раствора. [c.52]

    Широко применяется последовательное титрование при разных pH, особенно при анализе смеси алю.миния и железа. Сначала при pH 1—2 титруют железо с индикатором сульфосалициловой кислотой. Затем создают pH 5—6, и избыток комплексона П1 оттитровывают раствором соли железа с тем же индикаторо.м. Описано множество аналогичных методов с применением других индикаторов для железа или же титрованиел алюминия другими методами. Иногда определяют сумму алюминия и железа, затем в другой аликвотной части определяют железо, а содержание алюминия находят по разности. Однако при этом не следует применять те методы, в которых разница между величинами pH, рекомендуемыми для определения Ре и А1, незначительна. Например, в работе [509] железо титруют прн pH 2 салициловой кислотой, а затем титруют алюминий при pH 3 с индикатором медь + ПАН. При определении алюминия и хрома в одном растворе использовано различие в прочности их комплексонатов при различных pH и в зависимости от продолжительности нагревания, так как комплексонат хрома образуется только после довольно длительного кипячения.В табл. 10 приведены способы определения алюминия в присутствии других металлов. [c.77]

    В условиях определения алюминия Ре (III), 2г, Н/, Оа, Тп, Рс1, ТЬ и Т образуют окрашенные соединения с арсеназо и, следовательно, мешают определению алюминия. Влияние железа устраняют аскорбиновой кислотой. Медь (до 10-кратного избытка) можносвязать вбесцветный комплекс с тиомочевиной [214]. 25-кратный избыток цинканемешает [214]. Бериллий сильно мешает (0,7 мкг его эквивалентны 1 ж/сг алюминия) [656]. Не мешают до 10 мкг хрома [656], 40 мкг вольфрама [503]. Не мешают значительные количества щелочных и щелочноземельных металлов, магний и марганец. Фториды, фосфаты, оксикислоты и другие вещества, связывающие алюминий в комплекс, мешают. Сульфаты оказывают слабое влияние. [c.127]

    Дозинель [6871 при определении алюминия в медных сплавах с эриохромцианином R для маскирования мешающих элементов вводит тиогликолевую кислоту. Не мешают до 10% Sn и РЬ, до 30% Мп, до 1% Р, Sb и As. Определение проводится при pH 5,1—5,2 при количествах меди больше 40 мг pH должен быть 4,0. В присутствии Ni и Fe вводят поправки (1% Ni и 1% Fe эквивалентны 0,005 и 0,008% алюминия соответственно). [c.215]

    Титриметрические методы. Для определения алюминия в цинковых сплавах предложены комплексометрические методы с индикаторами комплексом меди с ПАН и сульфосалициловой кислотой. Однако эти методы требуют предварительного отделения алюминия от мешающих элементов. Проще определять алюминий в цинке и цинковых сплавах фотометрическими методами с алюминоном и эриохромцианином Н. [c.216]

    Металлические пробы готовят путем вытачивания из них дисков. Одну из поверхрюстей диска затем шлифуют абразивом, таким, как оксид алюминия или карбид кремния, и, если необходимо, полируют с алмазной пастой (например, определение меди в алюминии требует, чтобы шероховатость поверхности была меньше 10 мкм). [c.82]

    Кроссин [809] разработал метод полярографического определения свинца и висмута в меди, цинке и в цинковых сплавах, содержащих медь и алюминий. К раствору сплава прибавляют щелочь и цианистый калий и затем осаждают свинец и висмут сульфидом натрия. Сульфиды отфильтровывают, растворяют в разбавленной HNO3 (1 1) и повторяют осаждение сульфидом натрия. Полученный осадок растворяют в разбавленной азотной кислоте (1 1), раствор выпаривают досуха и остаток нагревают с небольшим количествам ра.чбавлепной НС1 (1 1), растио-ряют его в 10%-ной НС1, разбавляют раствор до определенного объема и определяют в нем свинец и висмут полярографически. Мышьяк, сурьма и олово, присутствующие в анали.зируемом материале, не мешают определению. [c.302]

    К 50 мл анализируемого раствора добавляют 0,5 мл 0,2 М раствора комплексона III, 6 капель 0,1%-ного водного раствора альОерона или кислотного хромсинего К. Раствор нагревают до 70—80° С, устанавливают pH 9—10 добавлением 10 мл аммиачного буферного раствора и титруют 0,1—0,3 М раствором салицилата или сульфосалицилата натрия до перехода красно-фиоле-TOBoii окраски в желтую. Определению мешают медь и алюминий в 80-кратном избытке [385]. [c.61]

    Второй способ предусматривал смешивание тонкоизмельчен-ных углекислой основной меди, гидроксида алюминия и фосфорной кислоты в определенных соотношениях. Полученная смесь тщательно перемешивалась, нагревалась до температуры несколько выше 100°С и сдавливалась на гидравлическом прессе. [c.251]

    Метод капельного анализа дает возможность идентифицировать титан и его сплавы, содержащие олово, марганец, ванадий, медь и молибден. Способы непосредственного определения алюминия не найдены, но тройные сплавы, содержащие алюминий, легче идентифицировать по положительной реакции с другими металлами, сопутствующими алюминию, например с оловом в титаналюминий-оловянных сплавах и ванадием в титаналюминийванадиевых спла- [c.116]

    Ферросиликоцирконий. Методы определения циркония Ферросиликоцирконий. Методы определения фосфора Ферросиликоцрфконий. Метод определения кремния Ферросиликоцирконий. Метод определения меди Ферросиликоцирконий. Метод определения алюминия Ферросплавы, хром и марганец металлические. Общие требования к отбору и подготовке проб для химического анализа Ферровольфрам. Технические требования и условия поставки [c.568]

    Титан губчатый. Метод определения азота Титан губчатый. Метод определения железа Титан губчатый. Методы определения углерода Титан губчатый. Методы определения хлора Титан губчатый. Методы определения кислорода Титан губчатый. Метод определения алюминия Титан губчатый. Метод определения кремния Титан губчатый. Метод определения ниобия и тантала Титан губчатый. Метод определения меди Титан губчатый. Метод определения циркония Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определеш1я палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.569]

    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]

    Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]


Смотреть страницы где упоминается термин Медь определение в алюминии: [c.168]    [c.150]    [c.551]    [c.77]    [c.115]    [c.145]    [c.24]   
Эмиссионный спектральный анализ атомных материалов (1960) -- [ c.384 , c.385 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий — медь

Медь, определение



© 2025 chem21.info Реклама на сайте