Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иод, действие на ионы

    Поляризующее действие иона (т. е. его способность деформировать, поляризовать другой ион) возрастает с увеличением заряда и уменьшением радиуса иона и сильно зависит от его электронной структуры. Ионы с благородногазовой электронной конфигурацией (например, Са +, Ва +) оказывают более слабое поляризующее действие, чем ионы с незавершенным электронным слоем (Т1 +, Ре +, РЬ + и т. п.). Наиболее сильное поляризующее действие (при одном и том же заряде иона) проявляют ионы с 18-электронной структурой внешнего слоя (Си+, А +, 1п +, Сс1 +, Н +). [c.68]


    Поляризующее действие ионов также зависит от их типа, заряда и радиуса. Оно тем значительнее, чем больше заряд, чем меньше радиус и чем устойчивее электронная оболочка иона. Наибольшее поляризующее действие оказывают те ионы, которые сами слабо поляризуются. Поэтому если данный элемент образует ионы различного заряда, то их поляризующая сила резко возрастает с увеличением заряда, так как одновременно с увеличением заряда уменьщается их радиус. Наоборот, многоатомные (комплексные) ионы больших размеров, как правило, сильно деформируемые, обычно оказывают незначительное поляризующее действие. [c.112]

    Современная теория двойного электрического слоя использует теорию Гуи — Чепмена для описания диффузий части этого слоя. В первоначальном виде теория Гуи — Чепмена ие учитывала наличия слоя Гельмгольца и поэтому ее допущения не позволяли правильно описать электрические явления, на которые существенное влияние оказывает плотная, непосредственно прилегающая к межфазной поверхности часть слоя. Пренебрежение размерами иоиов приводит к тому, что не учитывается минимальная толщина слоя, и это в свою очередь вызывает большие ошибки при расчете параметров двойного электрического слоя. Теория Гуи — Чепмена, учитывая только концентрацию и заряд нонов электролитов, не объясняет различного действия ионов разной природы, связанного со специфической адсорбцией их на межфазной поверхности. [c.60]

    По современному взгляду на механизм хлорирования изобутилена вначале в результате действия иона хлора на метиленовую группу образуется ион карбония, после чего перемещается двойная связь с одновременным отщеплением протона и получается хлористый металлил [17]  [c.181]

    По классической теории Аррениуса при т0,01 - 0,1 степень диссоциации сильных электролитов а = 0,75- 0,95. Вычисляемые отсюда константы диссоциации резко изменяются с концентрацией, т. е. не являются константами. Степень диссоциации, вычисленная по электропроводности, существенно отличается от найденной для концентрированных электролитов по уравнению (XVI, 6). Имеются и другие факты, указывающие на то, что степень диссоциации сильных электролитов значительно выше вычисляемой по теории Аррениуса. Так, каталитическое действие ионов гидроксония (Н3О+) в сильных электролитах изменяется пропорционально общей концентрации растворенного вещества, что указывает на независимость степени диссоциации от концентрации. [c.394]

    Если добавить К1, то реакция замедляется,так как на поверхности никеля адсорбируются ионы 1 , что подавляет стимулирующее действие ионов ОН . [c.227]


    Из уравнения (XII,22) следует, что в бесконечно разбавленных растворах сильных электролитов эквивалентная электронроводность приближается к предельному значению В таких растворах действие ионных атмосфер исчезает и X.,, может быть рассчитана по уравнению (XII,7). [c.273]

    Катионы при этом располагаются в ряд ЫН4+>Ь1+>К+>На+, а анионы — в ряд С1 >1 >Вг . Механизм подобного действия ионов при равной ионной силе в дисперсионной среде для катионов обусловлен избирательностью ионного обмена в торфе, а для анионов — воздействием на диффузионную подвижность влаги в материале [234]. [c.80]

    Первый из них имеет фиолетовую окраску, второй-светло-зеленую, а третий-темно-зеленую. Убедиться в том, что для них характерна указанная структура, можно, осаждая ион С1 действием иона + и удаляя гидрат-ную воду (соответственно нуль, одну или две молекулы) высушиванием вещества над НзЗО.  [c.221]

    Кислота определяется, как вещество, обладающее измеримой способностью отщеплять водородные ионы. С этой точки зрения сила кислот представляет собой количественное выражение этой способности. Гидролиз, по Т. Лоури, протекает через предварительную ионизацию двойной связи, т. е. обычная форма эфира под действием ионов Н+ или ОН" переходит в амфотерную молекулу. Принципиально реакция заключается в присоединении элементов воды с образованием приведенного выше комплекса эфир Н О. [c.550]

    Причины повышения стационарной концентрации водорода и перекиси водорода под действием ионов брома или иода являются, по-видимому, типичными для многих веществ, легко окисляющихся или восстанавливающихся. Так, ионы брома реагируют с радикалами ОН-, образуя ионы гидроксила и свободные атомы галогена [c.552]

    Уменьшение растворимости газов р присутствии солей называется высаливанием. Высаливающее действие иона повышается с ростом заряда и уменьшается с увеличением радиуса иона. Уменьшение растворимости газов в присутствии электролитов объясняется в основном тем, что ионы притягивают молекулы воды и не притягивают неполярные и слабо поляризуемые молекулы газов, вследствие чего увеличивается фугитивность растворенного газа. [c.383]

    Низкотемпературный катализатор очень чувствителен к правлению сернистыми соединениями и галогенами. Условия процесса термодинамически благоприятны для образования сульфидов цинка и меди, но, как показано в работе [53], механизм отравления связан в первую очередь с образованием сульфида цинка и вызванного этим укрупнением кристаллов меди. Аналогично и действие ионов хлора. Отравление распространяется послойно по ходу газа. В работе [4] отмечено резкое снижение активности катализатора при содержании [c.92]

    Образование и закрепление пузырьков газа на поверхности частиц при ЭК—Ф происходит в момент коагуляции и действия электрического поля, что отличает этот метод от метода электрохимической коагуляции с последующим отстаиванием, использующего действие ионов растворяющегося металла и электрофлотации с предварительным вводом коагулянта, основанного на прилипании пузырьков газа к уже сформировав-щимся частицам скоагулированных загрязнений. [c.61]

    Элементы подгруппы калия — калий К, рубидий Rb, цезий s и франций Fr — наиболее типичные металлические элементы — катио-ногены. При этом с повышением порядкового номера этот признак у элементов усиливается. Для них наиболее характерны соединения с преимущественно ионным типом связи. Вследствие незначительного поляризующего действия ионов (малый заряд, устойчивость электронной структуры, большие размеры), комплексообразование с неорганическими лигандами для К , Rb , s , Fr" нехарактерно, даже кристаллогидраты для них почти не известны. [c.490]

    Посторонние ионы в разбавленных хлоридных растворах действуют как ингибиторы, сдвигая критический потенциал питтингообразования к более положительным значениям [5]. Эффективность ингибирующего действия ионов уменьшается в ряду нитраты > хроматы > ацетаты > бензоаты > сульфаты. [c.343]

    Ион карбония, появляющийся в результате действия иона трет-бутила на к-бутен, [c.341]

    Н,.о НзО 4- ОН-Сила кислот представляет собой количественное выражение электронодонорной способности, сила щелочей—электроноакцепторной. Под действием ионов и ОН или НзО при гидролизе сперва происходит ионизация двойной связи по карбонильной группе и присоединение указанных ионов. Принципиально реакция за- [c.549]

    Есть надежда, что разработка новых хелатирующих агентов на основе более четкого понимания роли и механизма действия ионов металлов в биосистемах приведет к созданию в ближайшем будущем гораздо более селективных и эффективных агентов для осуществления терапевтического контроля присутствия ионов металлов, как токсичных, так и необходимых организму [215, 216]. [c.343]

    Одной из определяющих эксплуатационных характеристик катализаторов крекинга является их регенерируемость. Цеолитсодержащие катализаторы имеют несколько лучшие регенерационные характеристики, чем аморфные алюмосиликаты. Применение в цеолитсодержащих катализаторах редкоземельного цеолита улучшает регенерацию вследствие катализирующего действия ионов редкоземельных элементов на горение кокса. [c.99]


    Вследствие относительно высокого поляризуюшего действия иона Ве его соли подвергаются заметному гидролизу  [c.472]

    Из раствора красно-фиолетового изомера не удается осадить ионы Вг , но при действии ионами Ва осаждается ион ЗОГ. В растворе красного изомера, наоборот, не удается осадить ионы 50Г, но действием AgNOз осаждается бромид серебра А Вг. [c.523]

    Каталитическое действие ионов металлов на окисление масла подавляется соединениями другой группы антиокислительных присадок - деактиваторами металлов (metal dea tivators). В качестве деактиваторов применяются органические соединения (эти-лендиамины, органические кислоты), связывающие ионы металлов в неактивные комплексы. В последнее время в зарубежной литературе появились данные, что небольшое количество ионов меди в моторных маслах наоборот, является эффективным антиоксидантом и специально вводится в некоторые сорта масел. Этот момент следует учитывать при анализе работающих или отработанных моторных масел. [c.32]

    Еще более сложное, но не более строгое приближение было сделано Мельвин-Хьюзом [65], который при подсчете энергии ион-дипольйого взаимодействия учел эффект поляризации и силы отталкивания. Чтобы получить величину взаимодействия диполь — растворитель, была использ ована [66] модель Онзагера для диполя, окруженного оболочкой из молекул растворителя. Авторы воспользовались уравнением Пуассона для того, чтобы оценить влияние ионной оболочки на диполь. Полученные в этом случае ч )ормулы слишком сложны и вряд ли могут быть успешно применены для обработки экспериментальных результатов. Влияние ионной силы в реакциях между ионом и диполем может сказываться не только на специфических взаимодействиях. Для положительных ион-дипольных взаимодействий (0 > 90°) ориентация диполя приведет к тому, что поле иона будет уменьшать поля диполя. В результате следует ожидать, что ионная атмосфера оболочка), окружающая как свободный диполь, так и комплекс, образующийся при взаимодействии иона с диполем, будет гораздо сильнее стабилизировать свободный диполь. Это будет приводить к уменьшению скорости с увеличением ионной силы. В случае отрицательного взаимодействия увеличение ионной силы раствора вызывает увеличение скорости реакции. К сожалению, экспериментальных результатов, которые могли бы подтвердить эти выводы, до сих пор нет. Основная трудность здесь заключается в том, что до сих пор не было сделано ни одной попытки сравнить действие ионов и ионных пар в качестве реагентов [68]. Сложность модели сама по себе достаточно велика, и, по всей видимости, любое из соотношений, которое может быть выведено, сможет получить лишь качественное подтверждение. [c.459]

    У тцелочных и щелочноземельных металлов (за исключением Ве) окисная пленка пориста и поэтому не может оказывать защитного действия ионы металла имеют меиьший объем, чем атомы чистого металла. [c.551]

    В связи с этим можно предложить иную энергетически более выгодную последовательность реакций, в которой образование метана не связано с прямым действием иона метилкарбония на ароматическое кольцо. [c.134]

    В настоящее время наименее выясненной стороной карбоний-ионной полимеризации является, по-видимому, природа обрыва и переноса цепи. Некоторые вопросы, касающиеся этого, обсуждались Джеоргом, Векслером и Марком в обзоре по ингибиторам реакций полимеризации, протекающих под действием иона карбония [57]. [c.159]

    Особенно высоким поляризующим действием обладает ион водорода Н+, который отличается от всех других ионов гораздо мень--шимн размерами и полным отсутствием электронов. Поэтому ноп водорода не испытывает отталкивания от аниона и может сблизиться с ним до очень малого расстояния, внедряясь в его электрон пую оболочку и вызывая сильную ее деформацию. Так, радиус пона h равен 0,181 нм, а расстояние между ядрами атомов хлора и водорода в молекуле НС1 составляет всего 0,127 нм. В дальнейшем мы увидим, что многие кислоты но ряду своих свойств (устойчивость, способность диссоциировать в водных растворах на иоиы, окислительная способность) сильно отличаются от свойств образуемых ими солей. Одной из причин таких различий как раз и является сильное поляризующее действие иона водорода. [c.154]

    ИОН стремится двигаться в одну сторону, а окружающая его ионная атмосфера — в нротиаоположиую, вследствие чего направленное перемещение иона замедляется, а следовательно, уменьшается число ионов, проходящих через раствор в единицу времени, т. е. сила тока. Чем больше копцеитра сия раствора, тем сильнее проявляется тормозящее действие ионной атмосферы на электропроводность раствора. Значення степе [и диссоциации хлорида калия, вычисленные при 18 °С по электропроводности его растворов, показывают. что с ростом ко1щентрацнн а падает  [c.241]

    Однако падение стененн диссоциации объясняется на обра ю-ваннем молекул, а увеличенном тормозящего действия ионной атмосферы. В связи с этим, определяемое по электропроводности (или другими методами) значение степени диссоциации сильных электролитов 11а <ываетея кажущейся степенью диссо-ц и а и и и. [c.241]

    Важной особенностью таких растворов является то, что химические свойства электролита в них как бы складываются из свойств соответствующих ионов в таких растворах. Логически это понятно, так как если недиссоциированных молекул в растворе практически нет, то и на свойства раствора они не влияют. Это приводит, например, к появлению у электролитов групповых химических свойств, присущих всем электролитам, содержащим ион данного вида. Так, все хлориды и соляная кислота содержат ион хлора, и поэтому им свойственна реакция-образования осадка А С1 при взаимодействии с AgNOз. Подобные групповые реакции широко используются в аналитической химии. Напрнмер, действием иона водорода обусловлены все кислотные свойства способность изменять цвет лакмуса или метилоранжа в красный цвет или соответственно изменять окраску других индикаторов, растворять некоторые металлы с выделенцем водорода и образованием соли, нейтрализовать основания и т. д. Можно убедиться, что во всех указанных процессах кислота действует не своим анионом и не недиссоциированной молекулой, а именно водородным ионом. Чем больше концентрация водородных ионов, тем более резко проявляются все кислотные свойства раствора. Подобным же образом все свойства, общие для оснований, осуществляются действием гидроксильных ионов. Чем выше концентрация гидроксильных ионов, тем сильнее все основные свойства раствора. К групповым свойствам принадлежит также окраска раствора, вызываемая присутствием какого-нибудь иона (синий цвет гидратированных ионов Си +, зеленый — N 2- ). [c.397]

    Устойчивость КОЛЛОИДНОЙ системы может быть утрачена в результате нейтрализации электрического заряда частиц дисперсной фазы. Эта нейтрализация может быть достигнута при введении в коллоидную систему электролитов. Ионы введенного электролита нейтрализуют заряды противоположного знака, находящиеся иа поверхности коллоидной частицы. Нейтрализующее действие ионов усиливается с увеличением заряда ионов, В результате происшед-щсй нейтрализации зарядов коллоидные частицы снова получают способность коагулировать. Таким образом введение в коллоидную систему электролита устраняет препятствие коагуляции, которое 0бус.)10влен0 электрическими зарядами частиц дисперсной фазы. [c.195]

    Противоионы, подобно соответствующим ионам в гомогенной среде, катализируют многочисленные и разнообразные реакции органического синтеза [233]. Находясь в ионите в сольватирован-ном состоянии, они аналогичны свободным ионам в обычных растворах электролитов. Поэтому каталитические реакции под действием ионов в растворе и протизоионов ионита протекают по одному и тому же механизму. Отношение константы скорости ре- акции в гетерогенной системе Лгет к константе скорости реакции в гомогенной системе йгом при эквивалентной концентрации катализирующего иона называется эффективностью ионита Ли [237]  [c.175]

    Приведенные результаты однозначно показывают, что скорость гидридного переноса в серной кислоте может быть значительно повышена. В чем же принцип действия иона (СбН5)зС+ и каким образом он способствует ускорению гидридного переноса в равновесном состоянии при алкилировании на промышленных установках  [c.25]

    Так, каталитическое действие ионов I" на реакцию между тиосульфат-ионами и перекисью водорода Н2О2 обусловлено взаимодействием Н2О2 с I"  [c.244]

    Описанная модель структуры жидкой воды позволяет по-пово-му оценить и строение водных растворов электролитов, являющихся дисперсионной средой всех (в том числе неминерализованных) промывочных жидкостей на водной основе. Ранее гидратацию оценивали количественно только числом молекул воды, связанных ионом, — гидратацпонным числом иона. Хотя действие ионов на окружающие молекулы воды можно условно описать ка1 С электростатическое связывание ионом небольшого эффективного чис.ча молекул воды, все же при таком подходе действительная картина взаимодействия иона с водой часто искажается. Искаженные .- . г .-. представления о природе гидратации ионов осложняют и тормозят развитие наших знаний о процессах, происходящих, например, в ингибированных буровых растворах. Влиянме внедрившегося в структуру воды иона не ограничивается только переориентацией результирующих электронных центров. Большую роль играют также геометрические размеры ионов и их соответствие размерам. пустот в льдоподобных каркасах воды. Чем больше размеры иона превышают размеры этих пустот, тем интенсивнее его [c.25]

    Наконец диены, содержащиеся в крекинг-бензине, являются одними из компонентов, образующих нефтяные смолы, которые используются в лакокрасочной промышленности (в виде искусственной олифы) и в промышленности пластмасс. Такие смолы получают полимеризацией диепа с олефинами, содержащимися в той же фракции, под действием ионных катализаторов, например хлористого алюминия (гл. 21, стр. 400), [c.228]


Смотреть страницы где упоминается термин Иод, действие на ионы: [c.489]    [c.454]    [c.473]    [c.290]    [c.111]    [c.317]    [c.115]    [c.268]    [c.252]    [c.336]    [c.307]    [c.19]    [c.55]    [c.42]   
Курс химического качественного анализа (1960) -- [ c.552 ]

Курс химического и качественного анализа (1960) -- [ c.552 ]




ПОИСК







© 2025 chem21.info Реклама на сайте