Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеродные волокна структура

    Степень высокоэластичности регулируют изменением температуры, молекулярной массы дисперсной фазы, введением различны добавок. Обычно в высокоэластическом состоянии из НДС формируют углеродные волокна, различные гранулы и др. В твердом состоянии НДС в зависимости от порядка и плотности упаковки частиц мол<ет иметь стеклообразную или кристаллическую структуру. [c.18]


    Поверхность волокна должна рассматриваться как энергетически нескомпенсированная двумерная фаза. В соответствии с этим свободная энергия поверхности волокна экстремально чувствительна к структуре отдельных фрагментов. Так, ее значение для базовых углеродных поверхностей равно 160 МДж/м , а для ребер (поверхности по с-осям кристаллитов) — 4800 МДж/м [9-39]. По-видимому, от вида углеродного волокна эти две составляющие могут сильно изменяться. Однако их количественные оценки отсутствуют. [c.534]

    В кратком изложении технология УПА-3 сводится к вязке на обычных вязальных спицах из высокомодульного углеродного волокна серии эластичных волокнистых каркасов типа женской юбки, а затем высокотемпературного их уплотнения и связывания в единую трехмерную структуру будущего сопла. [c.155]

    Так как адгезия связующего к поверхности углеродного волокна определяет влияние состава на структуру и свойства КМУП, оптимальное содержание компонентов связано со свойствами поверхности волокна. К ним относятся удельная поверхность (диаметр волокна), микротекстура, микропористость с размерами пор, составляющими, как правило, 1-3 диаметра волокна, виды и размеры микротрещин и других дефектов, посторонние включения, функциональные группы. [c.529]

    Поглощение жидкого брома при комнатной температуре углеродными волокнами различной структуры [6-72] [c.314]

    Исследование фторированного волокна методом электронного парамагнитного резонанса [6-177] показало присутствие в спектре, кроме линий сверхтонкой структуры, синглетной линии в центре спектра с меняющейся интенсивностью в различных партиях углеродного волокна. По-видимому, появление этой линии связано с непрореагировавшим углеродом, содержание которого в различных партиях различно. О неоднородности фторуглерода свидетельствует.и различная интенсивность ЭПР поглощения в отдельных партиях. [c.400]

    Особенностью углеродного волокна, полученного из паров бензола, является относительно короткое время полною фторирования, обусловленное диаметром волокон и их слоистой структурой. При этом обеспечивается фторирование углеродной матрицы с высокой степенью трехмерного упорядочения, что позволяет получить фторуглерод с антифрикционными свойствами, соответствующими материалу, синтезированному из природного графита. Рентгеноструктурные исследования [6-153] показали, что вследствие возникающих внутренних напряжений тонкая структура матрицы изменяется, что влияет на протекание фторирования во времени. [c.402]


    Высокотемпературное растяжение СУ приводит к анизотропии ряда его свойств. Наблюдаемые при этом изменения структуры весьма близки по своему характеру к структурным превращениям, которые происходят при высокотемпературном изометрическом нагреве углеродного волокна. [c.501]

    Возможности обобщения влияния состава системы углеродное волокно—связующее на свойства без конкретной оценки структуры и свойств компонентов весьма ограничены. [c.529]

    Избирательная адсорбция связующего и формирование граничного слоя на поверхности углеродного волокна связаны с ее структурой [9-38]. Образование межфазного граничного слоя запаздывает по сравнению с отверждением связующего. [c.534]

Рис. 9-49. Гетерогенная структура углеродного волокна Рис. 9-49. <a href="/info/747427">Гетерогенная структура</a> углеродного волокна
    Углеродные волокна относятся к волокнам, производимым из неорганических материалов. Их получают обжигом, обугливанием и специальной обработкой обычного волокна. По своей структуре оно представляет собой ленты из углеродных слоев, имеющихся в кристаллической решетке графита. Прочность и [c.648]

    В соответствии с трехмерной моделью структура волокон типа Мод-мор-1 из ПАН-волокна состоит из оболочки, ядра и расположенного между ними слоя с сотовой структурой. Оболочку образуют кристаллиты, которые имеют внутренние раковины, а также внутренние и поверхностные трещины. Предварительная обработка исходного волокна длн уменьшения в углеродном волокне дефектов и несовершенств кристаллической структуры должна привести к повышению прочностных свойств волокна. [c.237]

    В заключение следует остановиться на пиролитических углеродных волокнах (ПУВ) — графитовых усах. Хотя их получают при пиролизе в газовой фазе, по своему применению они ближе к углеродным волокнам, чем к пироуглероду. Кристаллооптический анализ показывает, что ПУВ состоят из центральной оптически изотропной части и оптически анизотропного углерода, монослои которого параллельны оси волокна. Монослои имеют локальные нарушения преимущественной ориентации. При этом в поляризованном свете структура шлифов осевого сечения ПУВ и поперечного сечения пирографита аналогичны [135]. Авторы указанной работы отмечают в обоих случаях наличие чередующихся участков с различной ориентацией кристаллитов, полагая, что центрами формирования первичных надмолекулярных образований в ПУВ являются утолщения и изгибы стержневой части. Первичные надмолекулярные образования выходят на внешнюю поверхность, образуя характерное кольчатое строение ПУВ. Внутри первичных находятся более мелкие вторичные образования, причем на границах между ними отмечается упорядоченность кристаллической структуры. Такой характер надмолекулярной организации обусловил физико-механические свойства ПУВ. Поскольку, как в случае пирографита, разрушение происходит по границам образований, прочность ПУВ зависит от концентрации и расположения включений дисперсного углерода. Травление таких волокон жидким окислителем (концентрированная серная кислота с бихроматом калия) показало периодическое изменение реакционной способности в радиальном направлении, сопровождаемое изменением прочности вследствие удаления различных слоев волокна, отличающихся надмолекулярной организацией структуры  [c.242]

    Нам не представляется возможным автоматически переносить результаты взаимодействия металлов с углеграфитовыми материалами на углеродные волокна из-за специфичности структуры последних мелкие кристаллиты, в которых базисные плоскости вдоль границы волокна разделены узкими порами (параллельно оси волокна) и границами наклона, или кручения (перпендикулярно ей). При указанной структуре прочность волокна должна определяться прочностью границ кристаллитов и быть чувствительной к любым изменениям их состояния. Наличие металла на поверхности углеродного волокна может влиять на состояние и свойства волокон, так как при этом возможно протекание таких процессов, как химическое взаимодействие, диффузия, частичное и, в предельном случае, полное растворение волокна. Таким образом, изучение влияния покрытия на свойства углеродного волокна необходимо для того, чтобы знать, насколько покрытие может ухудшать характеристики как армирующего компонента, так и композиционного материала в целом. [c.129]

    Предложенный механизм достаточно хорошо объясняет многие закономерности направленного роста углеродного волокна. Но, к сожалению, автор не указывает причины резкого снижения скорости образования углеродного вещества. Также нет четкого пояснения возможности образования вторичной дендритной структуры. В данной модели роста углеродного волокна нет и обоснования построения нитевидного кристалла, диаметр которого по истечении определенного времени отличается от первоначального. [c.61]


    Электронномикроскопические исследования" выявили следующие основные закономерности роста волокнистого углеродного вещества. Система состоит из первичного и вторичного углеродного волокна, никеля, связанного с первичным или вторичным волокном и свободного никеля. Причем первичные И вторичные волокна не связаны друг с другом, а отличаются только диаметром. Для дендритной структуры характерно образование вторичной (дочерней) структуры на первичной (материнской). Средний диаметр первичного и вторичного волокна увеличивается с ростом температуры. Однако при фиксированной температуре первичные и вторичные волокна растут, не изменяя сдой диаметр. [c.77]

    Процесс получения УВН на основе ПАН состоит из 3-х стадий окисления, карбонизации и графитации. Предварительное окисление облегчает последующее дегидрирование ПАН-волокна. Особенно важно, что на этой стадии возникают предструктуры, обеспечивающие образование нужной структуры и ценных механических свойств углеродного волокна. [c.59]

    Можно выделить такие основные уровни надмолекулярной организации углеродных материалов I )межмолекулярное упорядочение ароматических слоев в пакеты - кристаллиты -эта стадия первичного надмолекулярного упорядочения присутствует практичски всегда (за исключением фуллеренов, нанотрубок, межслоевых соединений) 2) взаимная организация кристаллитов во вторичные надструктуры - мезофазные структуры в пеках и их наследие - области локальной ориентации в коксах, сажевые частиць[, макро- и микрофибриллы в углеродных волокнах 3) ориентационное упорядочение кристаллитов с центром (сажа), плоскостью (угли, гшроуглерод) или осью симметрии (углеродные волокна). [c.186]

    В зависимости от конечной температуры обработки и способности материала упорядочивать свою структуру различаются карбонизованные углеродные материалы и графитированные. Карбонизованный материал — это углеродный материал, прошедший термообработку до температуры начала графитации и, следовательно, обладающий паракристалли-ческой или турбостратной структурой (определение структуры см. в гл. II). Под искусственным графитом понимается углеродный материал, прошедший термическую обработку до температуры выше начала образования кристаллической структуры. Эта температура изменяется в широких пределах в зависимости от способности того или иного углеродного материала трехмерно упорядочивать свою структуру. Некоторые углеродные материалы не обладают такой способностью, и их структура остается турбостратной при нагреве до 2700 °С и даже выше. Так, практически не графитируются коксы из термореактивных смол (стеклоуглерод), углеродные волокна, некоторые виды саж. [c.11]

    Формирование надмолекулярных структур протекает в пластической матрице из ароматичских кластеров (пеки, металлургические коксы) в границах надмолекулярных структур исходного полимера (углеродные волокна, стеклоуглерод) как результат термомеханического воздействия в вязкотекучей матрице (природные угли рекристализованные графиты, углеродные волокна) в процессе осаждения из газовой фазы [c.186]

    Изложенные выше данные показывают, что текстура углеродного волокна играет важнейшую роль в поведении анода литий-углеродное волокно в литийионных ХИТ. Лучшие результаты могут быть получены при использовании волокна со слоистой структурой, которое способно противостоять разрушению слоев при внедрении лития и увеличении межслоевого расстояния. [c.344]

    В зависимости от вида волокна, технологии производства и конструкции КМУП могут быть получены как с анизотропными, так и с близкими к изотропным свойствами. При получении КМУП с объемным переплетением волокон и лент анизотропия показателей может быть значительно уменьшена. С развитием производства углепластиков было установлено, что их структура и свойства определяются не только соответствующими показателями составляющих компонентов, но и технологическими параметрами производства. Более 90% углеродного волокна в настоящее время перерабатывается в производстве КМУП. [c.507]

    Атактичность подвергаемого пиролизу полимера вызывает стерические ограничения при формировании структуры углеродного волокна и обусловливает его паракристалличность, г. е. двумерный порядок (рис. 9-34). Одновременно в ПАН-волокне имеются аморфные области с изотактическим расположением нитрильных групп [9-152]. [c.573]

    Приемлемая схема структурных преобразований ГЦ-волокна приведена на рис. 9-67. Согласно схеме из целлюлозы при пиролизе формируется остаток из четырехатомных звеньев, образующих зигзаги. Расположение этих звеньев генетически закладывает формирование последующей надмолекулярной структуры углеродного волокна, которая возникает выше 400 С. Принудительное вытягивание упомянутых звеньев приводит к увеличению надмолекулярной ориентации углеродных волокон. Вместе с увеличением степени ориентации снижается их усадка по длине при графитации. При нагревании до 2500"С усадка волокна в направлении, перпендикулярном оси волокна, более чем в 4 раза выше по сравнению с изменением размера вдоль оси. Это свидетельствует об образовании микротекстуры, состоящей из углеродных пачек (рис. 9-66). [c.623]

    Применение высокомодульных волокон на основе мезофазно-го пека позволяет значительно (более чем в три раза) снизить окисляемость КМУУ по сравнению с композитами на основе углеродного волокна из ПАН-волокна [10-22]. Их легирование бором ингибирует окисление в связи с увеличением упорядочения структуры, блокированием бором активных точек на поверхности волокна и образованием на поверхности оксида бора. [c.645]

    Так же как и у углепластиков, параметры КМУУ определяются синергизмом свойств волокон и связуюшего [10-43. По данным микроскопических исследований в поляризованном свете, структура формирующегося при карбонизации пекового кокса зависит от вида волокна [10-23, 24]. При использовании углеродного волокна с наименьшей текстурой на основе вискозного волокна ориентированной коксовой оболочки на поверхности волокна не наблюдается. [c.647]

    В зависимости от типа полимерной матрицы различают наполненные реактопласты, термопласты и каучуки (о последних см. в ст. Наполненные каучуки). В зависимости от типа наполнителя Н.п. делят на дисперсно-наполненные пластики (наполнитель-дисперсные частицы разнообразной формы, в т.ч. измельченное волокно), армированные пластики (содержат упрочняющий наполнитель непрерывной волокнистой структуры), газонаполненные пластмассы, маслонаполненные ка)гчуки по природе наполнителя Н.п. подразделяют на асбопластики (наполнитель-асбест), графитопласты (графит), древесные слоистые пластики (древесный пшон), стеклопластики (стекловолокно), углепластики (углеродное волокно), органопластики (хим. волокна), боропластики (борное волокно) и др., а также на гибридные, или поливолокнистые, пластики (наполнитель-комбинация разл. волокон). [c.168]

    Процесс получения углеродных волокон из органических веществ состоит из двух стадий карбонизации при температуре 900-1500 С и фафитации при 2600-2800 С. Углеродные волокна делятся на изотропные и анизотропные. Анизотропные волокна получают из высокоориентированных материалов с развитой системой фибрилл. Фибриллы углеродного волокна образованы турбостратными кристаллитами, которые связаны друг с другом через базисные плоскости аморфным углеродом. В изотропном углеродном волокне, которое изготавливается из фенольной смолы или нефтяных пеков, пакеты организованного углерода несколько меньше по размерам и образуют лентоподобные структуры. Углеродные волокна имеют плотность 1,3-1,7 г/см и удельную поверхность до 1000 м г. Графитация волокон приводит к повышению плотности, снижению удельной поверхности и уменьшению удельного сопротивления. Химическая устойчивость волокон в серной и азотной кислотах выше, чем фафита. Графитация снижает химическую устойчивость волокон, но повышает их стабильность к кислороду воздуха. [c.11]

    Очевидно, в действительности организация углерода является не на столько однородной, что постулируется в данной модели, причем, как на химическом уровне (межатомных связей), так и на более высоких уровнях. Проведенные в последние годы многочисленные структурные исследования показали, что не только в кристаллических, но и в аморфных углеродных объектах образуются упорядоченные структуры на молекулярном и надмолекулярном уровнях. Их возникновение приводит к тому, что углеродные вещества перестают вести себя как пространственно-гомогенные системы. В них появляются фаницы раздела, локальные неоднородности, которые могут быть зародышами трещин, фафитации и местами конценфации низкомолекулярных соединений. В работе предложена, например, весьма сложная модель строения чешуйки высокомодульного углеродного волокна, включающая перекрещивающиеся пачки ароматических лент, поры с осфыми углами, участки несовершенной упаковки лент, их резкие изгибы и скручивание. [c.22]

    Данные по структуре углеродных волокон противоречивы. Установлено, что они менее упорядочены, чем фафит, и не имеют четких рентгенофафических характеристик, а межплоскостные расстояния в них составляют 0,34-0,345 нм . Однако другие авторы показали, что углеродные волокна имеют только кристаллическую структуру и состоят из графитоподобных слоев. Плоскости слоев расположены параллельно оси волокна . Статистическая обработка результатов некоторых работ показала, что диамеф углеродных волокон составляет от 30 до 300 нм. Длина превышает диамеф на несколько порядков и может достигать 1 мм. [c.48]

    Состав углеродных от южений зависит от их структуры. В состав отложений углеродного вещества кроме углерода входит водород и другие элементы, количество которых различно в зависимости от природы исходного сырья, катализатора и режима процесса [58, 71]. В низкотемпературных углеродных отложениях содержание водорода обычно больше, чем в высокотемпературных. В состав практически всех отложений углеродного вещества, образуюцщхся на катализаторах, входят частицы катализатора или его отдельные атомы и молекулы. Причем в некоторых случаях содержание компонентов катализатора составляет значительную долю веса углеродного вещества. В углеродных волокнах содержание катализатора составляет от 1 до 25% [58, 71, 118, 119]. [c.14]

    В состав волокнистого углеродного вещества входит также водород и никель. Содержание водорода, возможно, объясняется адсорбцией последнего на НоверХНостИ углеродного волокна и замещением части углерода при гидрировании. Содержание никеля, возможно, объясняется задержкой частиц катализатора в структуре волокна. При Ш зких температурах 450-600°С образуются тонкие короткие углеродные нти. тюэтому из-за большей их [c.97]


Библиография для Углеродные волокна структура: [c.688]   
Смотреть страницы где упоминается термин Углеродные волокна структура: [c.72]    [c.200]    [c.46]    [c.314]    [c.7]    [c.131]    [c.55]    [c.511]    [c.432]    [c.52]    [c.66]    [c.18]    [c.69]    [c.80]   
Термо-жаростойкие и негорючие волокна (1978) -- [ c.222 ]




ПОИСК





Смотрите так же термины и статьи:

Структура углеродных саж



© 2025 chem21.info Реклама на сайте