Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Максвелла идеальные

    Примерно в то же самое время анализом поведения газов занимались шотландский физик Джеймс Кларк Максвелл (1831 — 1879) и австрийский физик Людвиг Больцман (1844—1906). Эти ученые установили следующее. Если предположить, что газы представляют собой совокупность большого числа беспорядочно движущихся частиц (кинетическая теория газов), то закон Бойля выполняется в том случае, если, во-первых, между молекулами газа не действуют силы притяжения и, во-вторых, молекулы газа имеют нулевые размеры. Газы, отвечающие этим требованиям, были названы идеальными газами. [c.120]


    Применения закона Максвелла — Больцмана к идеальному газу 97 [c.97]

    Применение закона Максвелла—Больцмана к идеальному газу [c.97]

    Коэффициенты диффузии в многокомпонентных идеальных смесях вычисляются с помощью уравнения Максвелла—Стефана [c.346]

    Коэффициенты многокомпонентной диффузии Dij могут быть найдены для идеальных газовых смесей из уравнений Максвелла — Стефана (III, 80), допускающих выражение коэффициентов Dij через бинарные коэффициенты диффузии Оц и состав смеси. [c.213]

    В соответствии с кинетической теорией газов (закон Максвелла — Больцмана) термодинамическое понятие равновесной температуры для идеального газа может быть расшифровано с помощью уравнения [c.23]

    Таким образом, для определения типа материала (твердый или жидкий) необходимы измерения угла сдвига фаз 0 при разных (минимум при двух) частотах со. Если tg 6 растет с увеличением о), то исследуемый материал ближе по свойствам к твердым телам. В идеальном теле Кельвина tg 0 меняется пропорционально и. Если tg 0 падает с увеличением со, то материал следует относить к жидкостям. В идеальной вязкоупругой жидкости Максвелла tgw меняется пропорционально На основании этих зависимостей необходимо сделать выбор между формулами для твердых и жидких вязкоупругих систем и по ним рассчитать константы т] и G. [c.242]

    Для любой системы, находящейся в равновесии и подчиняющейся законам классической механики, число молекул, обладающих энергией больше е, пропорционально фактору Больцмана g-e/fer g-EiR-r рде E-=Ne. Для идеального газа, молекулы которого (по предположению) обмениваются толька кинетической энергией, выполняется закон Максвелла — Больцмана для распределения молекул по скоростям доля молекул, скорость которых лежит в пределах от и до u + du, равна [c.57]

    Для диффузии в смеси двух идеальных газов справедливо уравнение Стефана —Максвелла  [c.248]

    В опыте по релаксации напряжения в растянутом образце, как мы видели, эластическая обратимая деформация со вре.менем переходит в вязкотекучую, необратимую. Полностью обратимая деформация развивается в идеально упругой стальной пружине, а полностью необратимая деформация развивается при нагружении поршня, помещенного в идеальную жидкость. Последовательное соединение пружины и поршня является простейшей моделью вязкоупругого тела (рис. 9.2). Эта модель носит название модели Максвелла (по имени ее создателя). [c.120]


    Определите молекулярный вес этого соединения. Используя закон Максвелла о распределении молекул по энергиям = /е напишите выражение для доли молекул идеального газа, трансляционная кинетическая энергия которых больше некоторой величины 8о. [c.9]

    Больцмана (Максвелла — Больцмана) распределение (190, 203)—равновесное статистическое распределение по энергии для молекул идеального газа. Является обобщением закона распределения Максвелла. [c.308]

    Рассмотрим далее распределение молекул по импульсам и скоростям. Распределение по скоростям было впервые выведено Максвеллом. (1860) па основании молекулярнокинетического подхода. Здесь мы выведем распределение Максвелла из формул (IV. 10), (IV. 15), (IV. 17). Энергию молекулы идеального газа можем представить в виде суммы [c.91]

    На рис. 10.5 приведено распределение по энергии молекул идеального газа при различных температурах, так называемое распределение Максвелла—Больцмана  [c.213]

    Уравнения (111.16—111.19) называются уравнениями Максвелла. Они находят широкое применение в термодинамике. Последнее из них, как уже упоминалось, используется при расчете стандартной энтропии для вычисления поправки при переходе от реального к идеальному газу. [c.58]

    Закон Максвелла—Больцмана 219 5. Определение термодинамических функций идеальных газов [c.398]

    Следовательно, концепция идеального проводника для объяснения электромагнитных свойств проводника не применима. В связи с этим Ф. Лондон и Г. Лондон предложили Прибавить к известным уравнениям Максвелла рассмотренное соотношение [c.261]

    Энтальпия идеального газа зависит только от температуры, реального — от температуры и давления. Существуют графические и аналитические методы определения энтальпии. Графический метод определения энтальпий углеводородов Сх—Со, основанный на принципе соответственных состояний, приводится в литературе [25], Энтальпии чистых компонентов при заданных условиях можно находить по диаграммам состояния этих веществ [25], Энтальпию можно определять графическим методом по графикам Максвелла (рис, 11,18 и 11,19) [2], На этих графиках представлена энтальпия индивидуальных углеводородов 1—08 в зависимости от температуры и давления. При определении по этим графикам энтальпии жидких смесей используется правило аддитивности, для паров правило аддитивности можно использовать до давления 0,1 МПа, При более высоких давлениях энтальпию паровой смеси рассчитывают путем интерполяции по средней молекулярной массе паров, В этом случае определяют среднюю молекулярную массу смеси. Затем по графикам, изображенным на рис, П,18 и 11.19, определяют значения энтальпий двух ближайших индивидуальных компонентов, между которыми находится значение средней молекулярной массы смеси. Энтальпию смеси определяют путем интерполяции между значениями энтальпий индивидуальных углеводородов по молекулярным массам этих индивидуальных углеводородов и средней молекулярной массе смеси. Если компонент смеси находится при температуре, превышающей его критическую температуру, энтальпию определяют по линии газ в растворе (см, рис, 11,18, 11,19), [c.87]

    В 1860 г. английский физик Джеймс Клерк Максвелл (1831—1879) вывел уравнение, позволяющее точно рассчитать долю молекул газа, скорость которых лежит в интервале от V до v-j-dv. Это уравнение называется законом распределения Максвелла (или законом распределения Максвелла — Больцмана) для скоростей молекул. Задача заключается в том, чтобы выяснить, сколько молекул йМ идеального газа, находящегося при температуре Т и содержащего N молекул с массой [c.639]

    Для жидкостей, которые не могут рассматриваться как идеальные смеси, уравнения, аналогичные уравнениям Максвелла—Стефана, отсутствуют. Недостатки кинетической теории жидкостей более существенны для многокомпонентных смесей, чем для бинарных, поскольку для последних необходимо знание только одного коэффициента диффузии, который может быть измерен или предсказан полуэм-пирическими методами, в то время как для многокомпонентной смеси число подлежащих определению коэффициентов диффузии значительно возрастает. [c.213]

    При исследовании механических свойств нефтяного кокса наибольший интерес представляет релаксационная теория [84, 226], основоположником которой следует считать Максвелла. Он предположил, что твердое тело представляет собою совокупность двух сред — идеально упругой, которая подчиняется закону Гука о пропорциональности деформации приложенному напряжению (силе), и вязкой среды, которая подчиняется закону Ньютона  [c.165]

    На основе прочности фазовых контактов с валентными связями и межмолекулярных взаимодействий представляется возможным теоретически рассчитать прочность твердых тел. Однако, это весьма сложная задача, так как )езультаты расчета сильно искажаются из-за наличия дефектов, пористости и других причин. Предполагая, что твердое тело является совокупностью двух сред — идеально-упругой, которая подчиняется 1а-коиу Гука о пропорциональности деформации ириложенному напряжению, и вязкой, которая подчиняется закону Ньютона,— Максвелл предложил релаксационную теорию твердых тел, в соответствии с которой напряжение Ор зависит от деформации Бр и скорости деформации ( /вр/Л)  [c.178]


    Известно, что нет принципиальной разннны в реологических свойствах реальных жидкостей и твердых тел. Объясняется это тем, что те и другие представляют собой конденсированное состояние вещества, характеризуемое высокой плотностью упаковки атомов и молекул и малой сжимаемостью. Жидкости и твердие тела имеют практически одинаковую природу сил сцепления, которые зависят только от расстояния между частицами. Еще Максвеллом (более 100 лет назад) было выдвинуто представление о механических свойствах тел как о ненрерывном ряде переходов между идеальными жидкостью н твердым телом. Механические свойства были смоделированы с помощью последовательного соединения элементов Гука и Ньютона (рис. VII. 5). Модель получила название модели Максвелла. [c.360]

    Более того, такое свойство биосистем, как самовоспроизводимость, непосредственно вытекает из статистического закона больших чисел и свойств аддитивности статистических распределений термодинамических функций. Хотя гипотеза об информационных полях не нова, нам удалось показать, развивая термодинамику многокомпонентных систем, что эти поля действуют между любыми объектами природы и имеют высшую разумную статистическую основу. Статистическое информационное поле связывает самые различные объекты системы в единое целое, независимо от их пространственно-временного существования. Например, распределение числа частиц по кинетической энергии (закон Максвелла) выполняется даже в идеальных газах, т.е. в системах, где нет никаких взаимодейств1и 1, кроме механических столкновений. Существуют системы, кочорые подчиняются четко выраженным законам Бернулли, Гаусса, Пуассрнг и 1.Д. Статистические сиязи склеивают самые различные объекты в единое це- [c.19]

    Напомним ход выводй соотношений молекулярной диффузии (по элементарной кинетической теории). Диффузия и другие явления переноса в газах (вязкость, теплопроводность) связаны с тепловым движением молекул. В установившемся равновесном состоянии распределение скоростей молекул газа отвечает распределению Максвелла (газы в дальнейшем будем рассматривать как идеальные). Средняя тепловая скорость молекул при максвелловском распределении [c.63]

    Выше уже говорилось, что дискретная структура материи, понятие об атоме и молекуле лежат в основе научных представлений современной химии. Важнейшее свойство материи — движение — рассматривается кинетической теорией, развитой во второй половине XIX в. Клаузиусом, Максвеллом и Больцманом , главным образом кинетической теорией газов. Было постулировано, что элементарные частицы материи — атомы и молекулы — находятся в постоянном движении. Рассмотрим сначала посгупательное движение молекул в идеальном газе, подчиняющееся законам классической механики. [c.18]

    Если два энергетических уровня (терма) характеризуются энергиями е и е, то число молекул идеального газа п и п, обладающих этими энергиями, определяется законом распределения Максвелла— Больцмана [c.497]

    Г. Л. Слонимский (1938 г.) в статье О законах деформации реальных материалов делает попытку изложить теорию Максвелла и Больцмана — Вальтерра в применении к таким веществам, как каучук и другие материалы, отличающиеся от идеально упругих тел неравновесными процессами деформации. Начиная с 1935 г., стали появляться работы П. А. Ребиндера и В. Б. Маргаритова по физико-химии и механике каучука и резин, которые в 1937 г. вызвали большую дискуссию на страницах журнала Каучук и резина . Вместе с А. А. Трапезниковым П. А. Ребиндер изучил механические свойства адсорбционных слоев для поверхностно-активных, нерастворимых в воде веществ методом смещения подвешенного на нити диска. Механические свойства растут и достигают максимума при полном насыщении поверхностного слоя. Б. В. Дерягин и другие развили физическую теорию устойчивости дисперсных систем. [c.8]

    Основы кинетической теории, которая объяснила газовые законы, были заложены в XVIII в. в работах М. В. Ломоносова и Я. Бернулли и получили развитие в XIX в. в трудах Р. Клаузиуса, Д. Максвелла и Л. Больцмана. Кинетическая теория идеальных газов строится на нескольких простых допущениях  [c.36]

    Любое вещество может находиться в трех агрегатных состояниях газообразном, жидком и твердом. Наименьшее влияние сил межмолекулярного взаимодействия наблюдается в газообразном состоянии, так как плотность газов мала и молекулы их находятся на больших расстояниях друг от друга. Газы, находящиеся при температурах, значительно превышающих их критическую температуру, и при давлениях ниже критического, мы может считать идеальными . К идеальным газам применимы статистика Максвелла — Больцмана и уравнение состояния идеального газа Клапейрона — Менделеева (с. 16). Однако при точных расчетах нужно вносить поправки на межмолекулярное взаимодействие (Рандалл, Льюис). Величины критической температуры (абсолютная температура кипения — Д. И. Менделеев) и критического давления зависят от строения молекул газа. При понижении температуры ниже Гкрит и при повышении давления газ начинает конденсироваться и под-действием межмолекулярных сил между отдельными молекулами вещество переходит в жидкое состояние. [c.93]

    Экспериментально установлено, что при течении дисперсных систем в области неразрушенных структур имеет место наложение деформаций сдвига (принцип аддитивности). Применение модельного анализа для определения вида деформации е (т), при помощи которого условно заменяют данную реальную систему схемой последовательных и параллельных совокупностей идеально упругих и вязких или пластично-вязких элементов, позволяет в каждом отдельном случае ориентироваться в числе независимых характеристик механических свойств этой системы и проследить в полуколичественном соотношении с экспериментальными данными все основные деформационные и релаксационные свойства неразрушенных структур. Кривые е (т) многих дисперсных систем могут быть с достаточной точностью описаны при помощи последовательно соединенных моделей Максвел-ла — Шведова и Кельвина (рис. 4). Модель Максвелла — Шведова состоит из пружины с модулем i, последовательно связанного с ним вязкого элемента, моделирующего наибольшую пластическую вязкость t]i, который блокирован тормозом на сухом трении, моделирующим предел текучести Р х- Модель Кельвина содержит упругий элемент с модулем и параллельно связанный с ним задерживающий вязкий элемент (демпфер), моделирующий вязкость упругого последействия rjj. [c.20]

    Законы идеальных газов чрезвычайно просты. Первоначально они были установлены опытным путем. Теоретическое истолкование и обоснование этих законов было дано позже на основе молекулярно-кинетической теории. Основные положения молекулярно-кинетической теории газов были сформулированы в середине XVIII в. русскими учеными М. В. Ломоносовым и Д. Бернулли. Отдельные вопросы теории уточнялись и развивались в течение последующих ста лет в работах Дальтона, Клапейрона, Максвелла, Больцмана, Клаузиуса и других ученых. В настоящее время молекулярно-кинетические представления широко используются всеми естественными науками. [c.19]

    Используя два других уравнения Максвелла [rot Н = = (4л/с) /, div Я = 0] и тождество rot (rot А) = grad (div А) — —VM, получаем для идеального проводника следующее уравне- [c.260]

    В-третьих, легко видеть, что имеет важное значение условие независимости переменных X. Если в качестве всех г переменных взять одну и ту же величину X, результат будет не верен. С другой стороны, достаточно слабая зависимость переменных друг от друга является допустимой. Это видно из вывода распределения Максвелла по скоростям из микроканонического ансамбля для идеального газа (см. упражнение в 1.3). 1Микроканоническое распределение в фазовом пространстве является совместным распределением, которое не факторизуется, но в пределе г оо распределение скорости каждой молекулы гауссово. Эквивалентность различных ансамблей в статистической механике основана на этом факте. [c.37]

    Реология конкретных систем может быть наглядно выражена с помощью механических моделей. Комбинации моделей простых тел — идеально-вязкого (ньютоновского — N), идеально-упругого (гу-ковского — Н) и дополнительной нагрузки, символически представленной как элеменг сухого трения (тело Сен-Венана — 81У), позволяют синтезировать более сложные системы. Последовательное сочетание упругого и вязкого элементов (Н — N) дает релаксационное тело Максвелла (М), а параллельное сочетание этих элементов (Н/К )— тело Кельвина (К), характеризующееся упругим последействием. Для упруго-вязко-пластичных релаксирующих систем типа глинистых суспензий и паст, цементных растворов, мучного теста и т. п., обладающих начальной прочностью и упругим последействием применяются еще более сложные модели, например тело Шведова [Н (М/31У) ] или его упрощенные модификарии — нерелаксирующее тело Бингама [Н — (К/81У)] или тело Бюргерса [М — К], не имеющее элемента сухого трения, но обладающее упругим последействием [27 ]. Набор пружин (Н), поршней (N) и ползунов (81У), образующих модели этих тел, имеет различные вязкости т), упругости Е и силы трения /, позволяющие зачастую на полуколичественном уровне воспроизводить поведение ряда систем [25]. При этом представляется возможным выбрать подходящую модель и определить наименьшее количество независимых переменных — реологических параметров и условных величин, которые необходимы для ее характеристики [20]. [c.231]


Смотреть страницы где упоминается термин Максвелла идеальные: [c.99]    [c.101]    [c.103]    [c.117]    [c.80]    [c.204]    [c.207]   
Физическая и коллоидная химия Учебное пособие для вузов (1976) -- [ c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Максвелл



© 2025 chem21.info Реклама на сайте