Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетальдегид схема

Рис. 32. Схема производства акролеина из формальдегида и ацетальдегида Рис. 32. <a href="/info/125860">Схема производства</a> акролеина из формальдегида и ацетальдегида

Рис. 78. Схема производства уксусной кислоты окислением ацетальдегида Рис. 78. Схема <a href="/info/405223">производства уксусной кислоты</a> окислением ацетальдегида
Рис. 77. Схема производства ацетальдегида гидратацией ацетилена в жидкой фазе Рис. 77. <a href="/info/125860">Схема производства</a> <a href="/info/319462">ацетальдегида гидратацией</a> ацетилена в жидкой фазе
    Технологическая схема процесса получения окиси этилена, разработанного фирмой S ientifi Design, изображена на рис. 6.24. Воздух, подаваемый компрессором У, смешивается с этиленом и циркулирующим реакционным газом и вводится в низ контактного аппарата 2, в трубки которого загружен катализатор. Температура окисления регулируется скоростью циркуляции теплоносителя. Реакционные газы охлаждаются в теплообменнике, нагревая циркулирующий газ, и в холодильнике, а затем компримируются дожимающим компрессором 3. Далее газ поступает в основной скруббер 4, где окись этилена улавливается водой. Большая часть выходящего газа направляется на смешение с исходной эти-лено-воздушной смесью, меньшая — в дополнительный контактный аппарат 5 для окисления непрореагировавшего этилена, а затем на промывку водой в дополнительный скруббер 6. Отходящий из скруббера газ выбрасывается в атмосферу. Водные растворы из скрубберов 4 и 6 смешиваются и поступают в десорбер 7. Из верхней части десорбера отводят окись этилена, пары воды и Oj. Они компримируются и направляются на двухступенчатую ректификацию. В колонне 9 выделяется этилен, Oj и другие легкокипящие компоненты. С верха колонны 10 отбирают окись этилена. В кубе этой колонны остаются высококипящие примеси (вода, ацетальдегид, этиленгликоль). [c.206]

Рис. 2.7. Схема производства ацетальдегида дегидрированием этилового спирта Рис. 2.7. <a href="/info/125860">Схема производства</a> ацетальдегида дегидрированием этилового спирта

    Принципиальная схема процесса приведена на рис. 6.11. Окисление циклогексана (/) осуществляется в растворе уксусной кислоты, взятой в десятикратном избытке, при 90 °С. К смеси добавляется ацетилацетонат трехвалентного кобальта (в количестве 3,5 кг/м ) и ацетальдегид (до 2 кг/м в расчете на вводимое сырье). Продолжительность реакции измеряется долями секунды. Оксидат с высоким содержанием адипиновой кислоты поступает в отделение 2, в котором происходит регенерация уксусной кислоты и непрореагировавшего циклогексана. Там же осуществляется выделение образовавшейся в ходе реакции воды. При последующей nepepa6otKe (5) от сырой адипиновой кислоты отделяются катализатор и побочные продукты реакции. Затем адипиновая кислота подвергается рафинации (4). Для производства 1 т адипиновой кислоты е чистотой 99,7% (масс.) расходуется 800 кг циклогексана. По сравнению с процессом получения адипиновой кислоты по двухстадийному методу с применением азотной кислоты на второй стадии, процесс фирмы Asahi технологически более прост и не связан с образованием труднореализуемых продуктов производства. [c.189]

Рис. 131. Схема двухстадийного синтеза ацетальдегида при окислении этилена воздухом Рис. 131. Схема двухстадийного <a href="/info/26862">синтеза ацетальдегида</a> при окислении этилена воздухом
    Ацетальдегид на указанном производстве получался по реакции Кучерова — гидратацией ацетилена в сернокислой среде в присутствии солей двухвалентной ртути. Процесс осуществлялся по следующей схеме в гидрата-тор загружалась кислота и ртуть система продувалась азотом до содержания кислорода в отходящем азоте менее 1 % включался водокольцевой насос, и ацетилен, барботируя через слой контактной кислоты, реагировал с водой с образованием ацетальдегида. [c.224]

    Производство ацетальдегида на основе реакции Кучерова осуществляется в промышленности по схеме, приведенной на рис. 77. Тщательно очищенный ацетилен, смешанный с циркулирующим газом, под давлением 0,15—0,25 МПа непрерывно барботирует в гидрататоре (высота 15, диаметр узкой части 1,34 м) через контактную жидкость, содержащую раствор сульфата ртути (II) в серной кислоте. [c.182]

    На рис. 81 представлена схема процесса окисления бутана, предназначенного в первую очередь для получения ацетальдегида, перерабатываемого затем в уксусный ангидрид [12]. [c.437]

    При проектировании производства винилацетата большой мощности необходимо иметь в виду, что такие побочные продукты, как ацетальдегид, ацетон и кротоновый альдегид являются важнейшими продуктами химической технологии и их выделение в качестве целевых имеет практическое значение. В связи с этим при разработке технологической схемы процесса ректификации предусмотрено выделение этих побочных компонентов в качестве целевых. [c.511]

    Формальдегид в виде 30%-ного водного раствора пропускается вместе с эквимолекулярным количеством ацетальдегида при 300— 320 °С через силикагель, пропитанный 10% раствором силиката натрия. Степень превраш,ения составляет 45—52%, а выход достигает 70—80% [13—15]. Непрореагировавшие альдегиды отделяются перегонкой от акролеина и снова возвращаются в процесс. На рпс. 32 изображена схема установки по синтезу акролеина из формальдегида и ацетальдегида. [c.92]

Рис. 132. Технологическая схема одностадийного синтеза ацетальдегида при окислении этилена кислородом Рис. 132. <a href="/info/24932">Технологическая схема</a> одностадийного <a href="/info/26862">синтеза ацетальдегида</a> при окислении этилена кислородом
    Технологическая схема процесса приведена на рис. 6.14. В реактор 7 подают катализаторный раствор, уксусную кислоту, этилен, кислород и циркуляционный газ [концентрация кислорода в исходном газе около 5,5% (об.)]. Реакция осуществляется при 130 °С и давлении 3 МПа. Выходящая из реактора смесь непрореагировавшего этилена, кислорода, продуктов реакции и уксусной кислоты после охлаждения в холодильнике 3 и дросселирования поступает в газосепаратор 4. Несконденсировавшиеся газы после поглощения двуокиси углерода раствором соды в скруббере 5 (с последующей десорбцией Og в отпарной колонне 6) возвращаются в реактор J. Для удаления инертных компонентов часть газа периодически выводится иа системы. Конденсат из газосепаратора 4 поступает в колонну 7, в которой отгоняются продукты реакции, включая образовавшуюся воду. Из куба этой колонны отбирается непрореагировавшая уксусная кислота, которая затем возвращается в реактор. В колонне 8 отгоняются низко-кипящие компоненты, которые для выделения ацетальдегида поступают в абсорбер 12. Поглощенный водой ацетальдегид выделяется из водного раствора ректификацией в колонне 13. Отбираемый из куба колонны 8 продукт, состоящий из винилацетата, воды и высококипящих компонентов, разделяется в отстойнике 9 на два слоя. Водный слой после извлечения следов винилацетата направляют в канализацию. Органический слой из отстойника 9 направляют для удаления воды в колонну 10, из которой смесь продуктов поступает в ректификационную колонну И, где отгоняется чистый винилацетат. Из куба колонны И выводятся высококипящие примеси. Пары воды с примесью винилацетата из верхней части колонны 10 возвращаются в колонну 8. [c.193]


    В состав летучпх соединений входят ацетальдегид, ацетали, ацетон, метиловый спирт, изо- п к-нрониловые спирты, пропионовый альдегид, акролеин и 10% воды. Схема переработки летучих продуктов окисления представлена иа рнс. 89. [c.155]

    Технологическая схема совместного синтеза уксусной кислоты и уксусного ангидрида изображена на рис. 121. Свежий очищенный воздух, подаваемый воздуходувкой 1 под давлением, немного превышающим атмосферное, смешивают с рециркулирующим газом, содержащим пары ацетальдегида. Полученная смесь [7—9% (об.) кислорода, 25—30% (об.) ацетальдегида. 1%(об.) уксусной кислоты, остальное — азот] поступает под распределительную решетку реактора 2 и барботирует через катализаторный раствор, захватывая с собой пары продуктов. Паро-газовую смесь частично охлаждают водой в холодильнике 3 и возвращают полученный конденсат в реактор, чтобы в нем был постоянный уровень жидкости. Затем проводят дополнительное охлаждение в холодильнике 4 и сатураторе 5 — туда вводится ацетальдегид и за счет его испарения из газа конденсируются остатки продуктов. [c.408]

    Создание прогрессивного процесса получения уксусной кислоты прямым окислением бензиновой головки в схеме комплексного использования нефтяного сырья, в отличие от предусмотренного проектом получения этой кислоты через ацетальдегид, позволит высвободить большое количество этилена для других производств и тем самым значительно повысит степень более рационального химического использования перерабатываемого сырья. [c.363]

    Такой механизм удовлетворительно объясняет тот факт, что при низких температурах и низких или уморенных давлениях и в условиях ограниченной конверсии углеводорода молярное отношение ацетальдегида к метанолу равно единице. С другой стороны, для разложения па приведенной схеме требуется такое расположение атомов, которое представляется неправдоподобным. [c.334]

    Было найдено, что добавленный ацетальдегид увеличивает скорость, а добавленный в избытке полностью ингибирует выход N2O. Это можно объяснить, если включить в схему следующие стадии  [c.363]

Рис. 91. Схема получения уксусного ангидрида из ацетальдегида (способ Кнапзака). Рис. 91. Схема <a href="/info/164347">получения уксусного ангидрида</a> из ацетальдегида (способ Кнапзака).
    Конденсат после сатуратора 5 п скруббера 7 стекает в сборник 12. Этот сырой продукт содержит 58—60% (масс.) уксусного ангидрида, 28—30% (масс.) уксусной кислоты, 9—10% (масс.) воды, 1--1,2% (масс.) этилидендиацетата, немного ацетальдегида и формальдегида. Ввиду возможности гидролиза ангидрида (особенно при повышенной температуре) в первую очередь осуществляют азеотропную отгонку воды с этилацетатом в колонне 13 с дефлегматором 14 и сепаратором 15. Затем от смесн продуктов в колонне 16 отгоняют этилацетат, возвращаемый на азеотропную отгонку. Уксусную кислоту и уксусный ангидрид получают в чистом виде после дополнительной ректификации, на схеме не изображенной. Выход продуктов 95% от теоретического. [c.409]

    Молекула изобутана имеет один третичный и девять первичных атомов водорода, причем атака на третичный атоы водорода приводит большей частью к образованию ацетона в результате отщепления мето-ксильного радикала от радикала третичной перекиси бутила или метиль-ного радикала от третичного бутоксильного радикала [66]. Отщепление первичного атома водорода, которое происходит, конечно, тем чаще, чем выше температура, приводит к образованию главным образом ацетальдегида, формальдегида и метильного радикала по следующой схеме  [c.338]

Рис. 78. Схема установки гидратации ацетилена в ацетальдегид Рис. 78. <a href="/info/93822">Схема установки</a> гидратации ацетилена в ацетальдегид
    Присоединение к винилацетату (схема 3.188) идет чер образование небольшого количества свободного ацетальдегида [1167]  [c.329]

    Отметим, что в течение этого процесса стационарное состояние характеризуется отсутствием окраски 12. В этом случае большая часть иода находится в виде Н1. По-видимому, их данные подтверждают именно такую схему. Во всяком случае, они показали, что невозможны другие механизмы, включающие прямые молекулярные реакции. Фотохимическое разложение ацетальдегида значительно сложнее, чем пиролиз нри высоких температурах. Хотя основными продуктами являются СО и СН4, в системе присутствуют также и На, (СНзСО)г, (СН0)2, НСНО и СаНв в количествах, составляющих 1 — 10% от количества СО. Относительное количество этих веществ обычно уменьшается с увеличением температуры [46]. Квантовые выхода понижаются при температурах ниже 100°, но быстро увеличиваются и достигают значений, равных значениям выхода для ниролиза нри температурах около 300°. Существуют данные, свидетельствующие о возможности не радикального, а самопроизводного распада фотовозбужденных молекул СН3СНО, причем этот самопроизвольный распад на СН4 и СО протекает в одну стадию. Вероятность такого распада увеличивается с уменьшением длины волны света. Наблюдаемые эффекты усложняются реакциями возбужденных молекул [c.334]

    Выявленные ограничения физико-химического характера существенно сокращают пространство поиска оптимальной схемы. Во-первых, ввиду коррозионной способности уксусной кислоты определяется начальная вершина дерева вариантов, т. е. питание разделяется на две фракции так, что впоследствии они могут рассматриваться независимо. Фракция легколетучих компонентов содержит ацетальдегид, ацетон, винилацетат и воду, из которых целевыми продуктами являются первые три компонента, [c.512]

    Среди кислородных продуктов не установлено точно соединение, вызывающее разветвление цепи. Льюис и Эльбе отметили, что для объяснения кинетически низкотемпературной реакции достаточно допустить умеренное разветвление цепи. Малерб и Уолш предположили, что разветвление цепи происходит в результате окисления гидроперекиси, Черняк и Штерн [13] недавно доказали, что реагентом, вызывающим разветвление цепи при низких температурах, является ацетальдегид, который реагирует по схеме  [c.336]

    Синтез технологической схемы. Легколетучая фракция содержит следующие компоненты ацетальдегид — товарный продукт ацетон — фракцию, содержащую частично ацетальдегид и винилацетат азеотропную смесь винилацетат—вода винилацетат—товарный продукт. [c.514]

    В последнее время за рубежом получил распространение метод получения 2-этилгексанола из масляного альдегида. Этот процесс является более эффективным по сравнению с вариантом конденсации к-бутанола. Известны две схемы получения 2-этилгексанола на основе к-масляного альдегида, получаемого карбонилирова-нием пропилена, и на основе масляного альдегида, получаемого из ацетальдегида. [c.126]

Рис. С. 13. Схема процесса окисления этилена в ацетальдегид двухстадийным методом Рис. С. 13. <a href="/info/329981">Схема процесса</a> окисления этилена в ацетальдегид двухстадийным методом
    Приведенная схема получения н-бутанола на базе ацетальдегида может быть улучшена за счет изменения аппаратурного оформления важнейших стадий — альдолизации и гидрирования. Так, весьма эффективной может оказаться замена трубчатого аль-долизатора колонным аппаратом, в котором тепло реакции снимается за счет испарения поступающего ацетальдегида. Такой реактор позволяет вести процесс с более высокой конверсией за проход. [c.67]

    Фридлендеру, исходя из о-аминобензальдегида и 2-хинолил-ацетальдегида (схема (89) . Эта реакция отличается от аналогичной для пиридина, когда в сходных условиях получаются 2,2 - и 4,4 -бипиридилы. 5,5 - и 7,7 -Бихинолилы получены восстановле- [c.249]

    Осуществлена также схема авто.матического регулирования процесса получения синтетической уксусной кислоты методо.м окисления ацетальдегида. Схема регулирования была синтезирована путем установки хроматографов и последующего экспериментального исследования процесса. С помощью прибора РХ-1 анализировались примеси в сырьевом ацетальдегиде, хроматограф РХ-5 определял неразложенный ацетальдегид в реакционных продуктах, а хроматограф ХПА-4 контролировал состав абгазов реактора. Регулирование процесса окисления ацетальдегида осуществляется каскадной схемой, состоящей из изодромного регулятора подачи кислорода в реактор, задание которого корректируется по величине примесей ключевых ко.мпонентов в уксусной кислоте-сырце и в абгазах. Описанная схема регулирования дала возможность снизить расходные коэффициенты по ацетальдегнду за счет снижения вредного эффекта побочных реакций. [c.313]

    Хотя нуклеофильная атака аммиака или аминов на атом углерода карбонильной группы альдегидов или кетонов происходит достаточно легко, образование амидов протекает только при определенных условиях. Первоначально образуется обычный тетраэдрический продукт присоединения (11), который может распадаться по друм независимым направлениям— до аминоспирта (12) или до требуемого амида схема (12), соответственно стадии (а) и. (б) . Преобладание одного из направлений зависит от относительной склонности к отщеплению (т. е. стабильности) остатков и ОН. Следовательно, в отсутствие сильных электронооттягивающих заместителей у будет предпочтительной миграция протона, приводящая к аминоспирту (12), который в свою очередь после элиминации воды образует основание Шиффа К К С = НК (при К = Н) см. схему (1 2) . В качестве электроноакцепторного заместителя для получения амидов наиболее широко используется тригалогенметильная группа (К = СС1з). Например, из трихлор-ацетальдегида схема (12), К = Н, 1 2 легко образуются формамиды [36], в то время как гексахлорацетон превращается в трихлорацетамиды схема (12), К == = СС1з [37]. [c.395]

    Метан (СН4) в настоящее время используется в основном для производства хлор- и нитропроиз1водных — метилхлорида, метиленхлорида, хлороформа, четыреххлористого углерода, нитрометана, применяемых в качестве растворителей в различных областях техники. При пиролизе адетана образуются ацетилен, сажа и водород, имеющие важное самостоятельное значение. Перспективно использовать метан в процессах окисления ДЛЯ производства фор мальдегида, метанола и ацетальдегида (схема I), а также как сырье при микробиологическом синтезе. [c.10]

    Эту реакцию нетрудно распространить на высшие олефины как правило, образуются кетоны, причем группа ОН в решающей стадии присоединяется к положительному концу двойной связи [113, 122]. Однако изменение реакционной среды может вызвать заметное повышение выхода альдегида из gHs в качестве главного продукта образуется ацетон, а пропионовый альдегид в количестве 20% получается при увеличении концентрации НС1 или при соответствующем выборе лигандов для Pd. Бутадиен сначала дает кротоновый альдегид, что указывает на 1,4-механизм, а затем ацетальдегид, который в присутствии сильной кислоты быстро конденсируется в триацетилбензол. В случае изобутена (и сходных олефинов) получаются только следы изомасляного альдегида, главным же продуктом является трет-бу-танол — результат простой гидратации, катализируемой кислотой. Вышеописанная схема показывает, что окончательная перегруппировка комплекса в этом случае невозможна  [c.170]

    Для стандартных соединений 1 моль л это отношение становится равным ехр (28,5—4,5)/Л = = 106>24 моль л. Если предположить, что Еа равно минимальному З71ачепию АН к, то отношение скоростей получения радикалов путем реакций 1 и А равно R i)/R (А) = = Ку/КА (АсН), где К у и Ка— константы равновесия. При 800° К и давлении ацетальдегида 1 атм R (i)/R (А) = % Если даже реакция А имеет энергию активации на 4 ккал вышё вычисленной энергии активации, количество радикалов, образующихся по этой реакции, составляет 20% от количества радикалов, образующихся по реакции 1 при 800° К и еще больше при более низких температурах. Включение реакции А в общую схему будет хорошо-совпадать с наблюдаемым во время опыта порядком, равным —1,8 (Леторт и др.), и ингибирующим действием посторонних газов, [c.336]

    Обычно из смеси в первую очередь отгоняют наиболее летучую синильную кислоту в ректификационной колонне 10 с кипятильником и дефлегматором при небольшом вакууме (чтобы избежать попадания высокотоксичной H N в атмосферу). Из кубовой жидкости в колонне II с водой в качестве третьего компонента отгоняют более летучую азеотропную смесь акрилонитрила, оставляя в кубе водный раствор ацетонитрила с примесью менее летучих соединений (циангидрины формальдегида и ацетальдегида, образовавшиеся из этих альдегидов и H N). Из раствора затем выделяют ацетонитрил (на схеме не показано). Дистиллят разделяют в сепараторе J2 на водный и органический слои, возвращая воду в ко-лмшу II. [c.426]

    Схема одностадийного процесса изображена на рис. 132. В реактор 1 типа пустотелой барботажной колонны, заполненной ка-тализаторным раствором, подают кислород и этилен (свежий и рециркулирующий). Реактор работает с постоянным уровнем жидкости при 130°С и 0,3 МПа. Избыточный этилен выдувает из раствора образовавшийся ацетальдегид, чем предотвращаются побочные реакции его конденсации. Вместе с ацетальдегидом испаряется часть воды, которую В атмосферу конденсируют в холодиль- [c.450]

    В мировой практике получения винилацетата технологические схемы довольно устоявшиеся. Это четырех- или пятиколонные установки, отличающиеся условиями работы первой колонны (деление смеси происходит по сечению винилацетат—бензол или вода—кротоновый альдегид). Целевыми продуктами являются винилацетат и уксусная кислота. В качестве фракций отбираются дополнительно без жестких требований на качество ацетальдегид и фракция кротонового альдегида [59]. [c.510]


Смотреть страницы где упоминается термин Ацетальдегид схема : [c.312]    [c.203]    [c.129]    [c.517]    [c.683]    [c.630]    [c.135]    [c.448]    [c.584]    [c.170]    [c.420]   
Биохимия Том 3 (1980) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетальдегид



© 2025 chem21.info Реклама на сайте