Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мостики также Дисульфидные мостики

    К наиболее важным природным высокомолекулярным соединениям относятся белки, являющиеся главной составной частью всех веществ животного происхождения. Они содержатся также в растениях, особенно в зернах пшеницы, семенах бобовых. Молекулы белков построены из остатков различных аминокислот, соединенных пептидными связями, но в каком порядке эти аминокислоты связаны друг с другом, для многих белков неизвестно. Линейно построенные макромолекулы белков могут быть связаны друг с другом, например, дисульфидными мостиками или водородными связями. Молекулярная масса различных белков колеблется в широких пре- [c.241]


    Полный химический синтез инсулина был осуществлен в ряде лабораторий, причем наиболее трудной частью этого синтеза оказалось образование дисульфидных мостиков в требуемых местах молекулы. Для решения этой задачи были предприняты попытки подражательного характера, в которых образование поперечных мостиков производилось не в инсулине, а в проинсулине (рис. 11-9). Необходимость в синтетическом инсулине обусловлена не только тем, что его получение из животных не может удовлетворить огромной потребности людей в этом гормоне, но также и тем, что химический синтез позволяет получать инсулин с любой первичной структурой, и в частности со структурой, отличной от структуры инсулина, выделяемого из животных, что может оказаться крайне важным и полезным для определенных групп больных диабетом. [c.505]

    Во многих биологически активных пептидах циклического строения наряду с дисульфидными мостиками обнаруживают также эфирные связи. Этот тип связей преобладает в различных пептидных антибиотиках (разд. 2.3.5). [c.206]

    Наряду С этими взаимодействиями в стабилизации трехмерной структуры участвуют также и дисульфидные мостики. [c.12]

    Первичная структура белков. Структура ковалентного остова белка, включающая аминокислотную последовательность, а также дисульфидные мостики внутри цепи и между цепями. [c.1016]

    Важную роль в формировании пространственной структуры белка играют также дисульфидные мостики (—5—5—), образующиеся за счет атомов серы, содержащихся в некоторых аминокислотах. [c.441]

    Установлено строение белкового гормона инсулина, регулирующего сахарный обмен в организме, а также строение рибонуклеазы — катализирующего гидролитическое расщепление рибонуклеиновых кислот (стр. 433) на простые нуклеотидные остатки. Молекула рибонуклеазы, имеет цепь из 124 аминокислотных остатков. Эта цепь сложена определенным образом и удерживается в этом состоянии четырьмя дисульфидными мостиками (за счет содержащей такие мостики аминокислоты цистина). В 1969 г. появилось сообщение о синтезе этого фермента. [c.427]

    В формировании активного центра принимают участие также молекулы воды, входящие в гидратационные слои, а в ряде случаев ионы металлов, связанные с белком, и органические- кофакторы. Определенную жесткость такой конструкции придают а-спирали, р-структуры и дисульфидные мостики. [c.19]

    К характерным особенностям структуры молекулы лизоцима (рис. 2-9) относится также присутствие четырех поперечных дисульфидных связей (дисульфидных мостиков) между различными участками цепи. Эти мостики возникают самопроизвольно в тех случаях, когда —SH-группы двух боковых цепей цистеина подходят близко друг к другу и окисляются в присутствии Оа или некоторых других реагентов [уравнение (2-8)]. Дисульфидные связи довольно часто встречаются в белках, секретируемых клетками, и значительно реже образуются во внутриклеточных ферментах. Вероятно, внутри клеток ферменты защищены от многих внешних воздействий и не нуждаются в дополнительной стабилизации. [c.101]


    РИС. 4-13. Структура инсулина свиньи. А. Аминокислотная последовательность А- и В-цепей, связанных друг с другом дисульфидными мостиками. Б. Пространственное расположение остовов полипептидных цепей в молекуле инсулина по данным рентгеноструктурного анализа. На рисунке указано также расположение некоторых боковых ароматических групп (см. также рис. 4-14 и 4-15). В. Схема, иллюстрирующая упаковку шести [c.292]

    Под четвертичной структурой понимают построение олигомерного белка из определенного комплекса нескольких полипептидных цепей. Ассоциация двух или нескольких полипептидных цепей происходит под действием межмолекулярных взаимодействий между полярными, ионизируемыми и неполярными боковыми группами посредством диполь-дипольных взаимодействий, водородных связей, гидрофобных взаимодействий и образования ионных пар. В исключительных случаях четвертичная структура также стабилизируется дисульфидными мостиками. [c.386]

    При обработке вакуумированного крекинг-остатка серой протекают реакции присоединения кластеров серы по двойным связям ненасыщенных углеводородов (по типу вулканизации каучуков) с образованием дисульфидных мостиков, за счет чего также повышается устойчивость конечных продуктов к процессам старения. [c.21]

    У глобулинов бобовых различные мономеры образованьЕ полипептидами с основными свойствами с низкой молекулярной массой и полипептидами с кислотными свойствами с более высокой молекулярной массой, соединение которых обеспечивается посредством ионных связей и дисульфидными мостиками. Действительно, глобулины рапса и подсолнечника имеют соответственно 13 и 12 дисульфидных мостиков, а также 4 и 5 свободных 5Н-групп. [c.161]

    Добавление цистеина действительно приводит к уменьшению когезии и прочности гелей [14]. Для 115-глобулина отсутствие повышения вязкости объясняется [43] присущими макромолекуле свойствами, а также условиями проведения манипуляций (см. рис. 10.6). В самом деле, если кажущаяся вязкость белковой диспергированной системы измеряется в течение всего цикла нагрева — охлаждения, то вероятно, что под действием нагрузки измерительного прибора 115-глобулин не может перестроиться и образовать сеть. Действительно, эта макромолекула имеет жесткую структуру ввиду присутствия дисульфидных мостиков. [c.519]

    I водородных и ионных связей, гидрофобных взаимодействий I дисульфидных мостиков. Это явление сопровождается существенным уменьшением растворимости белков [52]. Некоторые авторы [17, 84] показали также, что механическая стойкость текстурированных продуктов снижается, когда свободные амино- [c.553]

    В рассмотренной конформационной теории белка не постулируется образование в процессе структурной самоорганизации вторичных, регулярных структур. а-Спирали и р-складчатые листы должны автоматически появляться по ходу расчета на тех участках последовательности, где они оказываются самыми предпочтительными по энергии. Не привлекаются также данные рентгеноструктурного анализа белков и результаты их статистической обработки. Физическая теория и соответствующий расчетный метод исходят только из отмеченных выше четырех принципов, знания аминокислотной последовательности и валентной схемы белковой молекулы. Таким образом, в отношении пространственного строения белка теория является априорной. Предсказание трехмерной структуры строится на количественной оценке взаимодействий между всеми валентно-несвязанными атомами. При этом, однако, не требуется делать специальных предположений о роли в пространственной организации белковой молекулы водородных связей, ионных пар, дисульфидных мостиков и других видов взаимодействий. Так называемые гидрофобные [c.106]

    Конформации с величинами (У сщ = О и 6,2 ккал/моль, а также некоторые другие представляют интерес в связи с результатами, полученными Крейтоном [7] при исследовании процесса укладки денатурированной белковой цепи и локализации у метастабильных промежуточных продуктов дисульфидных связей. На разных стадиях окисления восстановленного белка Крейтон обнаружил продукты с S-S-мостиками между ys и ys , ys и ys , ys и ys . В конформации с энергией 6,2 ккал/моль ос-татю ys и ys оказываются сближенными. Соответствующая конформация у фрагмента Arg - ys была глобальной (см. табл. IV.8), а структура, близкая к экспериментальной, проигрывала ей 2,8 ккал/моль. У свободного фрагмента Arg -Arg последняя оказалась уже на 3,1 ккал/моль более предпочтительной, а у фрагмента Arg -Tyr - на 4,1 ккал/моль. Поэтому можно полагать, что метастабильное конформационное состояние молекулы БПТИ с дисульфидным мостиком ys - ys характерно для ранней стадии ренатурации белка. Глобальная и близкие ей низкоэнергетические структуры могут при удлинении цепи привести к сближенности остатков ys и ys , ys и ys . В связи с этим обстоятельством низкоэнергетические структуры разных типов, энергии которых отмечены в табл. IV.9 звездочками, оставлены для дальнейшего анализа. [c.444]

    Циклическим пептидам с дисульфидными мостиками посвящены общир-ные систематические исследования. В настоящее время растущий интерес вызывают работы по образованию пептидлактонов (например, актиномицина). Эфирная связь имеет больщое значение в случае гетеромерных пептидов, содержащих наряду с аминокислотами также гидроксикислоты. Больщинство таких пептидов встречается в природе в виде циклических структур (циклические пептолиды). [c.201]


    Многие сотни аналогов нейрогипофизарного гормона были синтезированы для изучения связи между структурой и функцией. Цели таких исследований определяются различными мотивами исследователей интересовали отдельные звенья эволюционного процесса, а также аналоги с улучшенными фармакологическими свойствами, как, например, аналоги с пролонгированным, раздельным действием и особенно аналоги со свойствами ингибиторов. Существенной для биологической активности является 20-членная кольцевая структура. Замешая один или оба атома дисульфидного мостика на СН2-группы, получают биологически активные карбоаналоги. Очень часто также удаляют а-аминогруппу, чем повышают уровень активности. Рудингер и Йошт синтезировали различные дезаминокарбооксито-циновые аналоги  [c.250]

    На протяжении многих лет обсуждался вопрос о том, как соединены между собой полипептидные цепи [53, 305]. Наиболее часто встречающейся ковалентной связью, соединяющей полипептидные цепи, является дисульфидный мостик ци-стина. В последнее время в мостиках между полипептидны-ми цепями обнаружены также фосфатные группы [237]. Установлено наличие как диэфирных, так и пирофосфатных связей, причем по аналогии с дисульфидными мостиками фосфатный мостик может связывать две различные полипептидные цепи (межцепочечный мостик) или соединять два остатка в одной и той же цепи, давая цикл (внутрицепочеч-ный мостик). [c.168]

    Пептидные цепи могут быть связаны также дисульфидным мостиком — 5 — 5 —, как, например, в кератине волос. На схеме показано образование дисульфидной связи между двумя остатками цистеина, каждый из которых потерял атом водорода  [c.287]

    Многие белки содержат также некоторое количество ковалентных связей, сшивающих цепи. Наиболее часто это - дисульфидные связи типа показанных на рис. УП.9,г. Дисульфидные мостики образуются между остатками цистеина (аминокислотный остаток - это та часть аминокислоты, которая присутствует в бепкотюй цепи). Группа К цистеина содержит группу -8-Н. Два остатка цистеина могут реагировать этими группами, теряя водород и образуя дисульфидную связь  [c.455]

    Последовательность аминокислот, или первичная структура фермента, определяет вторичную и третичную (трехмерную) структуры, т. е. свертывание пептидной цепи в макромолекуляр-ную глобулу, имеющую некоторую определенную полость для взаимодействия с субстратом или, если необходимо, с кофермен-том. Ферменты обладают сложной и компактной структурой, в которой боковые цепи полярных аминокислот, находящиеся на поверхности молекулы, направлены к растворителю, а боковые цепи неполярных в общем случае ориентированы внутрь молекулы, от растворителя. Трехмерная структура поддерживается большим количеством внутримолекулярных нековалентных взаимодействий аполярной, или гидрофобной, природы, а также благодаря ионным взаимодействиям, дисульфидным мостикам, водородным связям, иногда солевым мостикам [57]. Гидрофобные взаимодействия имеют наиболее важное значение, поскольку они, вероятно, ответственны за большую величину свободной энергии связывания, которая наблюдается при ферментсубстратных взаимодействиях. [c.202]

    Это предположение основывается на том, что трипептид глута-тион в дисульфидной форме, по-видимому, также имеет циклическое строение, отвечающее формуле II, и подтверждается следующими наблюдениями. Цистин обладает максимальным молекулярным вращением вблизи изоэлектрической точки ( [М]5641=—7 85 pH = 3—7), при сдвиге в более кислую или щелочную область вращение понижается М]5641 = —613 нри pH = 2 1М]5641 = —168 при рн = 12. Горовиц (1961> пpипи ывaef большие изменения [аЬ, происходящие при расщеплении надмуравьиной кислотой дисульфидных мостиков в белках, богатых цистином, деструкции жестких цистиновых структур, образуемых за счет водородных связей. [c.654]

    РЕЛАКСИН, пептидный гормон, молекула к-рого состоит из двух цепей, соединенных двумя дисульфидными мостиками мол. м. 5600. А-цепь состоит из 22, В-цопь — из 26 аминокислотных остатков. По расположению дисуль-фидных связей, а также пространств, строению Р. близок инсулину. Вырабатывается у беременных животных желтым телом яичников. [c.505]

    Яды таких хорошо известных насекомых, как пчелы и осы, (многими из нас испытанные на себе) представляют собой довольно сложные смеси различных веществ, и в качестве основных активных компонентов также содержат полипептиды. Мелиттин — основной компонент яда пчелы медоносной (его содержание достигает 50%) состоит из 26 аминокислотных остатков. В отличие от предыдущих групп нейротоксинов, его молекула не содержит цистеина вообще. Кроме мелит-тина, следует отметить МСО-пептид (22 аминокислоты) и апамин (18 аминокислот) — молекулы этих полипептидов содержат по 4 цистеиновых остатка, т.е. по два дисульфидных мостика (схема 4.4.4). [c.83]

    Если белок состоял из нескольких цепей, связанных дисульфидиы-ми мостиками, то такая обработка позволяет разделить белки на отдельные цепи, а затем исследовать каждую из цепей самостоятельно. Этим методом можно также определить, расположены ли дисульфидные мостики внутри одной цепи или между несколькими цепями. При окис- лении в первом случае молекулярный вес соединения остается неизменным. Метод был впервые применен Зангером для исследования инсулина. [c.515]

    А- и В-цепей, необходимую для правильного образования дисульфидных мостиков. Систематическими исследованиями по рекомбинации сшитых А-и В-цепей занимались преимущественно Линдсей, Бранденбург и Цан, а также группа Гейгера. Причем использованием сшивающего реагента была продемонстрирована принципиальная возможность синтеза инсупина по такому пути (рис. 2-43). [c.267]

    Однозначное доказательство первичной структуры инсулина, предложенной Сенгером, может быть получено лишь в том случае, когда дисульфидные мостики замыкаются однозначным образом в процессе химического синтеза и дисульфидный обмен исключен. После предварительной работы, проведенной Зервасом и Фотаки, а также Хиски с сотр., это удалось в [c.267]

    Другая возможность применения этого метода — связывание свободными сульфгидрильными группами на подобной матрице и таким образом, что при обработке протеазой отщепляются незакрепленные пептидные участки, которые затем удаляются элю-энтом. Затем содержащие SH-группы пептиды могут быть раздельно элюированы. Чтобы избежать образования дисульфидных мостиков между молекулами в растворе, можно также активировать SH-группы у белков воздействием 2-2 -дипиридилдисульфи-да до проведения переваривания протеазой, а после этого — очистку путем связывания пептидов активированными SH-группами на сорбенте, например тиолсефарозе 4Б с пониженной активностью. [c.84]

    Недавно были исследованы [35] экстракция запасных белков из пшеницы различными растворителями, а также свойства экстрагируемых белков в зависимости от условий процесса. Сравнивали 70 %-ный этанол, 55 %-ный изопропанол, 50 %-ный н-пропанол в присутствии или в отсутствие уксусной кислоты, а также влияние восстановления дисульфидных связей, температуры (4, 20, 60 °С) и предварительного удаления липидов. Было показано, что экстрагирование оптимально, когда проводится неоднократно при повышенных температурах и в присутствии восстановителей. н-Пропанол представляется наилучшим растворителем, так как экстрагирует все полипептиды в любых условиях. В присутствии восстановителей извлекают большую часть полипептидов, которые, как считается, обычно входят в состав глютенинов. Но, основываясь на их аминокислотном составе и на результатах экспериментов по биосинтезу белков, их рассматривают здесь как проламины с высокой молекулярной массой, образованные из нескольких полипептидных цепей, которые связаны между собой дисульфидными мостиками [136, 137]. [c.180]

    Больше всего известно об аминокислотной последовательности субъединиц с высокой молекулярной массой, изолированных Филдом и др. [79] (молекулярная масса, определенная с помощью ДДС-Ыа-ПААГ, — 144 ООО, ультрацентрифугированием — 69 600 Да). Действительно, установлена последовательность из 16 аминокислот N-концевой половины цепи она была определена при секвенировании изолированного белка [79]. Кроме того, благодаря клонированию ДНК, кодирующей эту субъединицу, и определению ее нуклеотидной последовательности стало возможным установить последовательность из 101 аминокислоты у СООН-концевой половины цепи [81] (см. табл. 6Б.15). Анализ последовательности N-концевой половины цепи подтверждает предыдущие результаты она не соответствует ни одной из тех последовательностей, которые были предварительно идентифицированы для а-, Р-, 7- и й)-глиадинов или агрегированных глиадинов. Эта аминокислотная последовательность N-концевой половины цепи по составу очень отличается от аминокислотного состава полного белка меньше неполярных аминокислот, глицина, а также глутаминовой кислоты и глутамина. Отмечается также отсутствие серина, тогда как все основные аминокислоты присутствуют. Поэтому такая последовательность не является представительной для первичной структуры всей полипептидной цепи, которая должна содержать зоны, более богатые глицином и бедные глутамином. Наконец, примечательно наличие 2 цистеинов из 5 или 6, которые входят в состав целой молекулы, так как оно с большой вероятностью предопределяет конформацию молекулы, как и возможности образования внутрицепочных дисульфидных мостиков. Опыты с разрывом полипептидной цепи на уровне цистеинов подтвердили, что большинство из них должно располагаться у концов цепи [79]. В самом деле, обнаруживается третий цистеин в положении 13 у С-конца [81]. Эта С-кон- [c.210]

    Структура комплексов пока полностью не выяснена, но роль дисульфидных мостиков установили быстро. Принятая в настоящее время модель долгое время была моделью трехмерной ковалентной сети, образованной смесью белковых субъединиц, связанных между собой дисульфидными мостиками они формируют также супермолекулу с молекулярной массой в несколько миллионов дальтон. Многочисленные исследования фактически показали нерастворимость или частичную растворимость глютенинов в отсутствие восстанавливающих агентов, а также высвобождение белковых субъединиц и уменьшение их вязкости после разрыва дисульфидных мостиков [88, 116]. [c.213]

    Данная модель предполагает наличие как дисульфидных мостиков, так и слабых связей в структуре функционального глютенина для обеспечения солюбилизации глютенина в диссоциирующих агентах (мочевина, гуанидинхлорид, смесь УМС) и в мылах, а также для поведения субъединиц при электрофорезе. [c.216]

    Многие традиционные технологии пищевой промышленности основаны на изменении структуры белков, что позволяет получать продукты разной текстуры. Наиболее известными примерами являются клейковина, а также казенны. Так, при хлебопечении замешивание теста из муки с водой и солью изменяет структуру клейковины и вызывает образование упругой и растяжимой белковой сети, в которую заключены крахмальные зерна. От реологических характеристик этой белковой сети зависят важнейшие свойства теста, а также конечное качество хлеба. Среди участвующих здесь молекулярных механизмов важную роль, по всей видимости, играют окисление за счет кислорода воздуха сульфгидрильных групп клейковины и перекомбинация дисульфидных мостиков. В процессе сыродельного производства молоко претерпевает изменения и переходит из жидкого в твердое состояние. Это преобразование связано с дестабилизацией мицелл казеина под действием сычужного фермента химозина или молочнокислого брожения. В этом случае происходит образование белкового геля, свойства которого тесно связанные с условиями получения геля, предопределяют правильный ход процесса созревания и конечное качество сыра. [c.528]

    При филировании белков основным критерием служит молекулярная масса. Общепризнано, что в диапазоне 10—50 тыс. Да белки проявляют высокую склонность к филированию. Молекулы с очень малой массой дают прядильные растворы с чрезвычайно низкой вязкостью, образующие нестойкие белковые нити, которые быстро диспергируются в коагулирующем растворе. Наоборот, из белков с очень высокой молекулярной массой на этапе денатурации получаются прядильные растворы с очень сильной вязкостью, что делает невозможным прядение волокон. Некоторые белки также образуют очень густые гели в щелочной среде за счет появления межцепочечных ковалентных связей типа дисульфидный мостик , что вызывает необходимость подгонять, приспосабливать параметры филирования [97]. [c.537]

    Образование между ними дисульфидных мостиков не сопровождается заметным изменением геометрии и, следовательно, не приводит к рассогласованности сложившихся у линейных последовательностей стабилизирующих межостаточных взаимодействий. Обе нуклеации входят в трехмерную структуру инсектотоксина без существенных изменений. Промежуточный Arg -Lys и С-концевой Gly -Asp участки, более подвижные, но обладающие предрасположенностью к формам цепи, комплементарным образовавшимся циклическим нуклеациям, детерминируют свои состояния. При этом за счет многочисленных стабилизирующих контактов происходит сближение остатков ys , ys и ys , ys . Между ними, также не вызывая стерических осложнений, образуются еще две цистеиновые пары. Результаты расчета, проведенного по описанной схеме (см. рис. III.20), устанавливают для инсектотоксина Ij следующую систему дисульфидных связей  [c.325]

    Таким образом, рассмотрение в свете результатов теоретического конформационного анализа фрагмента нейротоксина Leu - ys пяти 110мологичных белков приводит к заключению, что различия в аминокислотных последовательностях участка 1-23 не сказываются на форме пептидного остова и конформации дисульфидного мостика ys - ys . Все остатки гомологов свободно встраиваются в рассчитанную для ненро-токсина II циклическую трехмерную структуру Leu - ys- , не вызывая ее дестабилизации. Принимаемые иногда новыми остатками иные положения боковых цепей также отвечают низкоэнергетическим областям Х Хг соответствующих остатков нейротоксина II, которые в этих случаях оказываются более предпочтительными. Следовательно, рассчитанная геометрия белкового остова предоставляет возможность реализации у различающихся аминокислот в эволюционно отобранных последовательностях нейротоксинов ряда конформационных состояний. Для всех гомологов найденная структура фрагмента 1-23 является глобальной. [c.425]


Смотреть страницы где упоминается термин Мостики также Дисульфидные мостики: [c.223]    [c.360]    [c.97]    [c.269]    [c.554]    [c.292]    [c.297]    [c.308]    [c.328]   
Биохимия Том 3 (1980) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте