Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородные связи в молекуле ДНК

    Муравьиная, уксусная и монохлоруксусная кислоты — вещества с межмолекулярными водородными связями. Молекулы этих кислот могут находиться в цис- и транс-формах. Например, молекулу уксусной кислоты можно изобразить в виде [c.241]

Рис. 27.2. Схема водородных связей молекул воды в кристаллической решетке льда Рис. 27.2. Схема <a href="/info/98103">водородных связей молекул воды</a> в <a href="/info/2897">кристаллической решетке</a> льда

    Благодаря водородным связям молекулы объединяются в димеры и более сложные ассоциаты. Последние могут иметь линейное, разветвленное или кольцевое строение. [c.140]

    В кластерах с КЧ = 6 молекулы воды расположены вокруг ионов по вершинам слегка искаженных октаэдров. В случае К+ эти октаэдры искажены несколько больше, чем октаэдры вокруг Ыа+. Между молекулами воды, образующими первую гидратную оболочку иона Ыа+ в / -структурах, водородная связь никогда не образуется. Среди / -структур кластеров К(Н20) иногда возможны такие, в которых молекулы первой гидратной оболочки соединены водородной связью. Молекулы воды, принадлежащие ко второй гидратной оболочке, образуют, естественно, водородные связи как друг с другом, так и с молекулами, составляющими ближайшее окружение иона. [c.146]

    Современные методы физико-химического анализа не позволяют, к сожалению, классифицировать водородные связи молекул воды с веществом торфа по энергии. В частности, в соответствующей области ИК-спектров наблюдается широкая полоса поглощения. Но феноменологическое разделение по энергии водородных связей молекул воды с органической частью торфа можно дать с определенной степенью достоверности, исходя из химического состава и структуры макромолекул отдельных компонентов. [c.64]

    Фуппы (-СОО -NHз и др.), а гидратация полярных заместителей - ориентацией молекул воды в результате образования водородных связей. Молекулы гидратно-связанной белком воды можно представить в виде монослоя вокруг ионизированных И полярных групп полипептида, в то время как гидрофобные ра- [c.359]

    Пары оснований, связанные водородными связями Молекула ДНК обеспечивает хранение наследственной информации, закодированной определенной последовательностью оснований, присоединенных к углевод-фосфатной цепи. Установлено, что молекула ДНК является матрицей для синтеза информационной РНК , которая далее контролирует синтез белков на определенных структурах клетки, называемых рибосомы . В конечном счете каждая группа из трех оснований молекулы ДНК ответственна за совершение определенной операции при синтезе белка. Все 64 возможные комбинации трех оснований дают команды или для объединения отдельных аминокислот в белковую последовательность, или для окончания приращения цепи (некоторые комбинации кодируют одну и ту же команду). [c.321]

    Гидролиз по аниону можно представить как результат поляризационного взаимодействия аниона и связанных с ним водородной связью молекул воды  [c.185]


    Предполагают, что в жидком фтороводороде за счет водородных связей молекулы образуют зигзагообразные цепи (НР) , которые также обнаружены в кристаллической и газообразной фазах  [c.75]

    При образовании внутримолекулярной водородной связи молекула теряет способность к межмолекулярной ассоциации. Например, отсутствует ассоциация у салицилового альдегида и наблюдается у изомерных м- и /г-оксибензойных альдегидов, у которых нет внутримолекулярной Н-связи и [c.128]

    Вторая группа подобна первой, но с менее ярко выраженной способностью к образованию водородных связей. Это жидкости, способные к образованию двухмерной сетки водородных связей. Молекулы этих жидкостей содержат только одну гидроксильную группу. Ко второй группе относятся фенолы, некоторые кислоты, одноатомные спирты, молекулы которых тоже сильно ассоциированы. [c.221]

    Аналогично вюртциту построены кристаллы льда. Если заменить атомы цинка и серы в вюртците молекулами воды, то получим структуру льда. Фрагмент этой структуры показан на рис. 1.80. Каждая молекула НаО в кристалле льда соединена водородными связями с четырьмя другими молекулами. Водородные связи молекул имеют тетраэдрическую направленность, обусловленную тетраэдрическим расположением 5р -гибридных орбиталей [c.160]

    Благодаря водородным связям молекулы объединяются в димеры и полимеры. Последние могут иметь линейное, разветвленное или кольчатое строение. Так, муравьиная кислота как в жидкой, так и п газообразной фазе существует главным образом в виде димера его структура [c.232]

    Аналогично вюртциту построен лед. Если мы заменим атомы цинка и серы в вюртците молекулами воды, то получим их расположение в структуре льда. Фрагмент этой структуры показан на рис. 141. Каждая молекула в структуре льда соединена водородными связями с четырьмя другими водородные связи молекул имеют тетраэдрическую направленность, обусловленную тетраэдрическим расположением sp -гибридных орбиталей атома кислорода, две из которых дают ковалентную связь с атомами водорода, а две другие заняты неподеленными электронными парами, которые притягиваются ионами водорода соседних молекул НгО. На рис. 141 черные кружки показывают положение водорода, а штриховка — область, где сосредоточен отрицательный заряд. [c.260]

    Водородная связь играет важную роль при взаимодействиях в растворах. Благодаря водородным связям молекулы объединяются в димеры и полимеры, т. е. происходит их ассоциация. Это заметно влияет на многие свойства растворов. [c.33]

    Долгое время необычные свойства воды были загадкой для ученых. Выяснилось, что они в основном обусловлены тремя причинами полярным характером молекул, наличием неподеленных пар электронов у атомов кислорода и образованием водородных связей. Молекула воды (рис. X1V.2, а) может быть представлена в виде равнобедренного треугольника, в вершине которого расположен атом кислорода, а в основании — два протона (рис. XIV.2, б). Две пары электронов обобществлены между протонами и атомом кислорода, а две пары неподеленных электронов ориентированы по другую сторону кислорода. Длина связи О—И составляет 96 нм, а угол между связями 105°. Связь О—Н имеет полярный характер, молекула воды также полярна. Благодаря полярности вода хорошо растворяет полярные жидкости и соединения с ионными связями. Наличие неподеленных пар электронов у кислорода и смещение обобществленных электронных пар от атомов водорода [c.371]

    При образовании водородной связи молекулы располагаются определенным образом. Атом Н всегда находится на линии, соединяющей центры двух атомов У, так как они обладают, высокими одноименными зарядами и поэтому взаимно отталкиваются, т. е. угол У—Н... равен 180°. Величина угла Н... —Н зависит от типа гибридизации орбиталей атома У. [c.94]

    За счет свободных электронных пар кислорода одна молекула спирта взаимодействует с частичным положительным зарядом гидроксильного атома водорода другой молекулы. Образуется особого типа связь — водородная связь. Молекулы спирта ассоциируют  [c.284]

    Характерной особенностью межмолекулярных водородных связей является их направленность три атома Л, Н и 5, участвующие в образовании водородной связи, расположены на одной прямой. При этом расстояние Л — Н...В для различных веществ составляет 2,5— —2,8 А. Посредством водородных связей молекулы объединяются в димеры и полимеры. Такая ассоциация молекул приводит к повышению температуры плавления и кипения, увеличению теплоты парообразования, изменению растворяющей способности. Водородные связи обусловливают аномально высокую диэлектрическую проницаемость воды и спиртов по сравнению с диэлектрическими свойствами других жидкостей, молекулы которых имеют дипольные моменты того же порядка взаимную ориентацию молекул в жидкостях и кристаллах параллельное расположение полипептидных цепочек в структуре белка поперечные связи в полимерах и в двойной спирали молекулы ДНК. Благодаря своей незначительной прочности водородная связь играет большую роль во многих биологических процессах. Характерно, что молекулы, соединенные водородными связями, сохраняют свою индивидуальность в твердых телах, жидкостях и газах. В то же время они могут вращаться, переходить таким путем на одного устойчивого положения в другое. Кроме водорода промежуточным атомом, соединяющим два различных атома, может служить дейтерий, который, как водород, расположен на линии А П...В. При такой замене водорода на дейтерий энергия связи возрастает до нескольких десятков джоулей на 1 моль. [c.133]


    Сравнение длин связей, например для муравьиной кислоты, показывает, что ковалентная связь в исходной молекуле мономера испытала деформацию. Ее длина увеличилась от 0,097 в мономере до 0,107 нм в димере. Большее или меньшее удлинение связи Н—X и ее разрыхление наблюдается и в других веществах. С другой стороны, укорочение межатомного расстояния Н. .. V упрочняет водородную связь. Энергия водородной связи невелика и лежит в пределах 8—40 кДж. Энергия этой связи примерно в 10 раз больше энергии ван-дер-ваальсового взаимодействия и на порядок меньше энергии ковалентной связи. Так, энергия водородной связи Н. .. Р равна 42 кДж, Н. .. О 21 кДж, Н. .. N 8 кДж. Водородная связь проявляется тем сильнее, чем больше относительная электроотрицательность и меньше размер атома-партнера. Поэтому она легко возникает с атомами неметаллических элементов второго периода Периодической системы и в меньшей степени характерна для хлора и серы. Несмотря на малую прочность водородной связи, она определяет иногда структуру вещества и существенно влияет на его физические и химические свойства. Благодаря водородным связям молекулы объединяются в димеры и более сложные ассоциаты, устойчивые при достаточно низких температурах. Ассоциаты могут представлять собой одномерные образования [c.138]

    Таким образом, в случае отсутствия заметных водородных связей молекула кристаллизационной воды имеет рефракцию 3,35 0,1 см . Это значение сопоставлено в табл. 79 с рефракциями твердой и жидкой воды и кри- [c.180]

    Сравнение длин связей, например, для муравьиной кислоты показывает, что ковалентная связь в исходной молекуле мономера испытала деформацию. Ее длина увеличилась от 0,097 в мономере до 0,107 нм в димере. Энергия водородной связи невелика и лежит в пределах 8 — 80 кДж/моль. Так, энергия водородной связи Н...Р равна 82, Н...0 — 21, H...N — 8 кДж/моль. Водородная связь проявляется тем сильнее, чем больше относительная электроотрицательность и меньше размер атома-партнера. Поэтому она легко возникает с атомами неметаллических элементов второго периода системы и в меньшей степени характерна для хлора и серы. Благодаря наличию водородной связи молекулы объединяются в димеры и более сложные ассоциаты, устойчивые при достаточно низких температурах. Ас-социаты могут предоставлять собой одномерные образования (цепи, кольца), двумерные плоские сетки и трехмерные пространственные структуры. [c.101]

    Сопоставление изотерм адсорбции пара бензола на исходном силохроме, карбо-кремнеземах с разным содержанием пироуглерода и на графитированной саже позволяет проследить за изменением природы поверхности этих адсорбентов (рис. 4.10). Несмотря на экранировку части силанольных групп поверхности, обусловливающих слабую- водородную связь молекул бензола с гидроксилированной поверхностью, кремнезема, резкое усиление неспецифического взаимодействия с углеродом приводит к увеличению адсорбции пара бензола на кар-босилохроме. Сравнение адсорбционной способности ГТС и карбосилохрома по отношению к пару бензола говорит о том, что поверхность изученного карбосилохрома покрыта пироуглеродом не полностью. При этом образуется, по-видимому, мозаичная поверхность адсорбционные свойства которой можно регулировать, откладывая различные количества пироуглерода. [c.88]

    Водородные связи образуются также между молекулами воды, многих органических соединений и отдельными частями больших молекул. Благодаря водородным связям молекулы объединяются в ассоциаты. Например, структура фтороводорода соответствует формуле (НР) , где п = 2 -Н 6. [c.57]

    Из физической химии известно, что водородная связь характерна для соединений, содержащих атомы кислорода, фтора и в меньшей степени азота Она проявляется тем сильней, чем больше электроотрицательность атомов-партнера и чем меньше его размеры, т.е. молекулярная масса. Электроннографическими исследованиями установлено, что благодаря водородным связям молекулы могут объединяться в димеры и даже полимеры. Способностью к ассоциации отличаются вода, спирты, карбоновые кислоты, фтороводород, аммиак и многие другие. Ассоциация приводит к повышению температур [c.64]

    Вследствие наличия водородной связи молекулы воды ориентируются относительно одна другой, образуя связи, изображенные на схеме, приведенной ниже, пунктиром [c.39]

    В медном купоросе Си504-5Н20 вокруг Си (II) координированы четыре молекулы воды в плоскости и две 504 -группы по оси. Пятая молекула Н2О играет роль мостика, объединяющего водородными связями молекулы Н. 0 в плоскости и 504 -группу  [c.627]

    Кинетические данные показывают, что аналогично влияет температура на длительность коагуляции. Из данных по зависимости длительности разделения фаз от температуры могут быть определены пороговые температуры коагуляции Гпор, и Тпор,, которые, так же как Спор, и Спор > являются характерными параметрами процесса коагуляции для данного типа латекса [45]. Если при введении электролита в латексные системы происходит резкое уменьшение сил электростатического отталкивания между частицами за счет снижения -потенциала частиц и подавления диссоциации адсорбированных молекул ПАВ (и изменения растворимости молекул ПАВ), то под влиянием теплового воздействия происходит ослабление водородных связей молекул воды и ПАВ адсорбционного слоя, что также способствует гидрофобизации системы и понижению ее устойчивости. В интервале времени тг — ть по-видимому, преодолевается энергетический барьер, препятствующий коагуляции системы и разделению фаз. При проведении коагуляции в условиях, при которых концентрация электролита Сэл Спорг и [c.258]

    Структура и свойства связанного слоя определяются природой и свойствами каждого компонента в слое. Так, в случае разделения водных растворов полярных органических веществ структура связанного слоя, в отличие от структуры слоя, состоящего в основном из молекул воды, имеет дефектные участки. Это о бусловлено некомненсврован-ностью меж[молекулярных сил в участках раствора, где молекулы воды связаны с гидрофобными частями молекул растворенных веществ. Такая структура 1менее прочна, так, как водородные связи молекул оды, прилегающих к дефектным участкам, ослабляются из-за понижения донорной спо собности ОН-групп, поскольку неподеленная пара электронов этих молекул перестает служить одновременно акцептором протонов в водородной связи. [c.220]

    Являясь неполярными, углеводородные жидкости слабо растворяются в воде. Возможность растворения в воде углеводородов, как и других неполярных веществ, определяется числом льдоподобных структур. Чем больше этих структур, тем больше полостей, куда могут внедриться неполярные молекулы, и тем больпзе величина их растворимости. Эти факторы редко учитывают, например, при бурении в интервалах многолетнемерзлых пород, когда при повышении температуры водородные связи молекул замерзшей воды разрываются, уменьшая число льдоподобных образований, и изменяют адгезионные характеристики углеводородных пленок. Больнюе значение при этом имеет соотношение размеров молекул углеводородных жидкостей и пустот в льдоподобных структурах, наличие в воде органических и неорганических веществ, стабилизирующих ее структуру и приводящих к возникновению в системе процессов высаливания и всаливания неполярных молекул. Эти явления, кажущиеся несущественными на первый взгляд, оказывают большое влияние на процессы, происходящие на различных поверхностях раздела в промывочных жидкостях. [c.28]

    Водородная связь. В тех случаях, когда водород соединен с сильно электроотрицательным элементом, он может образовать водородную связь, которая является промежуточной между химической и меж-молекулярной. Эта связь обусловлена тем, что смещение электрона от атома водорода превращает его в частицу, не имеющую электронов, не отталкивающуюся электронами других частиц, т. е. испытывающую только притяжение. Водородная связь проявляется тем сильнее, чем больше электроотрицательность атома-партнера и чем меньше его размеры, поэтому она характерна для соединений фтора и кислорода, в меньшей степени — для азота и еще в меньшей степени — для хлора и серы. Соответственно меняется и энергия водородной связи. Благодаря водородным связям молекулы объединяются в димеры, полимеры и ассоциаты. Ассоциация приводит к повышению температуры плавления и температуры кипения, изменению растворяющей способности и т. д. Водородная связь образуется очень часто, и объясняется это тем, что молекулы воды встречаются повсеместно. Каждая из них, имея в своем составе два атома водорода и две необобществленные электронные пары, может образовать четыре водородные связи. [c.237]

    Для цеолита NaX интенсивная размытая полоса довольно симметрична, что указывает на приблизительное постоянство энергии водородной связи молекул воды при средних заполнениях полостей. Это соответствует виду зависимости q от /г для цеолита NaX (см. рис. 2.14). В случае же адсорбции воды цеолитом KNaX эта полоса несимметрична и смещение частоты валентного колебания гидроксильных групп молекул воды, Av, характеризующее прочность водородной связи, изменяется с ростом заполнения. Оно велико при небольших л с дальнейшим ростом п уменьшается, потом снова возрастает, опять уменьшается, и, наконец, [c.43]

    Важной стороной эффектов растворителя является ориентация молекул растворителя в процессах превращения кислоты в сопряженное основание и основания в сопряженную кислоту. Рассмотрим, к примеру, превращение кислоты РСООН в сопряженное основание КСОО в водном растворе. Образуя водородные связи, молекулы растворителя располагаются вокруг [c.348]

    Еще более сильную водородную связь молекула НР образует с фторид-ионом Р —возникает ион [Р - Н -Р], Кислые соли фтороводорода, например КНР2, содержат этот анион. [c.96]

    Мнения некоторых исследователей согласуются в том, что качественное поведение воды является поведением системы связанных посредством случайных водородных связей молекул воды, которая подвержена непрерывному реструктурированию (см. [12] [13], разд. ПВ, с. 3405 [14], с. 4185 [15], с. 419 и 426 [16] [17], с. 125). Это побудило авторов указанных работ и других исследователей использовать модели случайных графов для изучения свойств воды . Существование резких фазовых переходов, наблюдаемых в воде, и внезапное появление гигантских компонент в случайных графах при величинах критической вероятности делают такие модели особенно привлекательными. Первоначальные попытки использования этого подхода привели к установлению того факта, что случайные графы типа графов Эрдёша — Реньи не являлись полностью удовлетворительными для моделирования такой физической системы [c.501]

    Помимо увеличения концентрации органических молекул в водной фазе добавление ониевых катионов существенно изменяет структуру воды и тем самым активность попавших в водную фазу органических молекул. Структура воды нарушается вследствие разрушения гидратной оболочки вокруг ионов "ОН (наименьшей гидратной структурной группировкой является группировка Н3О2, с которой прочными водородными связями связаны другие молекулы воды) при введении что приводит к появлению свободных (не связанных водородными связями) молекул воды. Это подтверждается исследованием ИК-спектров гидратированных полимерных пленок, содержащих группы ЫМег, +N> 63 1 , +НМеэ - ОН [19]. [c.20]

    Для соединений, молекулы которых содержат атомные группировки Р—Н, О—Н, N—Н, структуру кристаллов в основном определяет водороднал связь, молекула воды, имеющая две полярные связи О—Н и две направленные [c.117]


Смотреть страницы где упоминается термин Водородные связи в молекуле ДНК: [c.58]    [c.223]    [c.605]    [c.10]    [c.208]    [c.254]    [c.233]    [c.313]    [c.684]   
Гены и геномы Т 2 (1998) -- [ c.42 , c.43 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Молекулы связь

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте