Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теоретический конформационный анализ

    Как следует из приведенных данных и анализа цитируемой литературы [29, 30, 34-37, 40, 41], на определение конформаций простых углеводов в растворах было направлено много усилий. В результате применения рентгеновской, ИК-, ЯМР-спектроскопии, диэлектрометрии, поляриметрии, теоретического конформационного анализа в настоящее время получена достаточно четкая картина состояния и поведения моно- и дисахаридов в растворах. Это вызвано большим интересом к изучению особенностей гидратации этих биологически активных веществ термодинамическими методами, так как необходимым условием правильной интерпретации термодинамических свойств и характеристик гидратации является наличие точной информации о состоянии растворенного вещества в растворе. [c.76]


    Рассмотренные в этой главе методологические вопросы теоретического конформационного анализа были разработаны для исследования пространственного строения низкомолекулярных органических соединений. Что же касается нашей темы - структурной организации белков, то задача такого масштаба перед расчетным методом не ставилась, и поэтому многие важнейшие вопросы, вставшие на пути к априорному расчету нативных конформаций белковых макромолекул, остались незатронутыми. Так, даже в принципе не была обсуждена сама возможность использования классического подхода, предполагающего независимость электронного и конформационного состояний молекулы. Если считать справедливыми изложенные в этой главе бифуркационную и физическую теории структурной организации белка, то доказательство применимости механической модели к данному объекту является самой главной и прежде всего требующей ответа задачей. Однако принципиальная возможность использования полуэмпирического конформационного анализа в исследовании белков также еще не предопределяет положительного решения других вопросов. Необходима методология, специально разработанная для расчета пространственного строения белковых молекул. Верхним пределом применимости изложенного метода конформационного анализа, как показано ниже, являются лишь три- и в простейших случаях тетра- и пентапептиды. Таким образом, второй важнейший вопрос на пути к решению проблемы структурной организации белка заключается в создании специфического методологического подхода, в который существующий метод конформационного анализа вошел бы как составная часть. [c.107]

    Широкое использование теоретического подхода на основе рассмотренной механической модели для анализа конформационных возможностей молекул органических соединений началось в первой половине 1960-х годов, когда представилась возможность переложить большой объем вычислений на ЭВМ. Во второй половине этого десятилетия теоретический конформационный анализ стал применяться для исследования пространственного строения монопептидов и регулярных полипептидов. [c.113]

    К принципиальным достижениям исследований конформационных возможностей свободных монопептидов можно отнести следующие. Во-первых, выполнен теоретический конформационный анализ всех стандартных аминокислотных остатков и для каждого из них получен полный набор оптимальных конформационных состояний. Во-вторых, с помощью целого комплекса физико-химических методов изучено пространственное строение [c.190]


    Проблема ближних взаимодействий решена методом теоретического конформационного анализа, обычно используемого в исследованиях пространственного строения малых органических молекул. Для свободных монопептидов 20 стандартных аминокислот были найдены все возможные конформации и в каждом отдельном случае выявлена взаимообусловленность состояний основной и боковой цепей (см. гл. 5). Реальность полученных данных подтверждена результатами комплексного физикохимического исследования структур большого числа монопептидов в различных средах. Теоретические конформации монопептидов сопоставлены с геометрией основных и боковых цепей аминокислотных остатков в известных трехмерных структурах белков. Показано, что реализующиеся в белковых молекулах конформационные состояния остатков за редкими исключениями, которые, по-видимому, следует отнести к артефактам, отвечают наиболее выгодным конформациям свободных монопептидов. Средние и дальние взаимодействия ни в одном случае не вступают в противоречие с требованиями, диктуемыми ближними взаимодействиями Их роль заключается в выборе конформации остатка из числа низкоэнергетических состояний свободного монопептида. Этап исследования ближних взаимодействий завершился составлением для свободных монопептидов 20 стандартных аминокислот универсальных наборов низкоэнергетических конформаций, необходимых и достаточных для описания всех конформационных состояний остатков, встречающихся в белковых структурах (см. табл. 11.17). [c.220]

    В основе теоретического конформационного анализа лежит поиск оптимальных пространственных форм молекул при варьировании переменных геометрических параметров и учете энергетических вкладов от взаимодействия валентно-несвязанных атомов. Для определения энергии каждой Оптимальной конформации необходимо расстояние между атомами выра- [c.233]

    При оценке достоверности результатов теоретического конформационного анализа олигопептидов данные отдельных физико-химических Методов и их комплекса во многих случаях нельзя считать надежным критерием. [c.289]

    Настоящая глава посвящена структурной организации пептидного гормона секретина, т.е. обсуждению результатов решения прямой структурной задачи, достаточно сложной для теоретического конформационного анализа молекулы [215]. В. Бейлисс и Э. Старлинг [216] в самом начале нашего века обнаружили в слизистой оболочке верхней части тонких кишок некий химический фактор, который, освобождаясь при контакте с соляной кислотой и всасываясь в кровь, стимулировал отделение панкреатического секрета гуморальным путем. Он был назван секретином и отнесен к группе гормонов, название которой впервые и появилось в связи с [c.371]

    Природные и синтетические пептиды, изученные методом теоретического конформационного анализа [c.390]

    Конформация молекулы, как отмечалось, определяется взаимодействиями валентно несвязанных атомов. Поэтому при создании метода теоретического конформационного анализа, прежде всего, встал вопрос о способе количественной оценки энергии этих взаимодействий. Из двух альтернативных путей его решения - квантовомеханического и классического - первый должен быть исключен из-за громоздкости объектоп исследования, особенно если иметь в виду молекулы белка. Многочисленные попытки Б. Пульмана и А. Пульман использовать в конфор-мационном изучении пептидов полуэмпирические методы квантовой химии ограничились анализом лишь элементарных монопептидов [64]. Рассмотрим второй путь решения. [c.112]

    Таким образом, опытные данные и результаты теоретического конформационного анализа показывают, что в отношении своей конфигурации пептидная группа в амидах, циклических и линейных пептидах, депсипеп-тидах и белках имеет лишь две вакансии - ш = 180° и ш = 0°, что, в свою очередь, бесспорно свидетельствует о большой высоте потенциального барьера, разделяющего транс- и цыс-конфигурации. [c.136]

    Первыми нашими объектами теоретического конформационного анализа явились метиламиды N-ацетилглицина, N-aцeтил-L-aлaнинa, N-аце-тил- -валина и М-ацетил-/.-пролина [20, 67]. Выбор был продиктован предположением о том, что изучение пространственного строения молекул этой серии выявит верхний и нижний пределы конформационных возможностей основных цепей монопептидов всех стандартных аминокислот. В работах Шараги и соавт. [63-65] было показано, что свобода вращения вокруг связей N- и С -С существенно различается только в следующих случаях при отсутствии заместителя у атома С (монопептид Gly), при наличии не более одного заместителя при атоме СР(А1а), при наличии двух заместителей при атоме P(Val) и при замыкании углеводородной цепочкой (-СН2-)з атомов N и С (Pro). [c.157]

    Итак, были рассмотрены результаты теоретического конформационного анализа совместно с данными экспериментального исследования пространственного строения серии метиламидов N-ацетил-а-аминокислот и их N-метильных производных в различных средах. В основу интерпретации опытного материал ыли положены геометрические и энергетические характеристики ограниченного набора оптимальных конформаций монопептидов, изученных теоретически. При этом обнаружилось полное соответствие между всеми вьшодами теоретического анализа, с одной сто-роньг, и эспериментальными данными, с другой. В результате была установлена непосредственная связь между оптимальными формами рассчитанных монопептидов и соответствующими опытными данными, полученными с помощью различных физических методов теоретический и экспериментальный подходы не обнаружили противоречий в оценке тенденции смещения положений конформационного равновесия у изученных монопептидов при переходе от неполярных к полярным растворам. Тем самым было показано, что использованные в расчете потенциальные функции и параметризация адекватно отражают реальные взаимодействия атомов одного аминокислотного остатка и удовлетворительно имитируют влияние на эти ближайшие взаимодействия окружающей среды. Расчетный метод конформационного анализа выдержал, таким образом, свое первое испытание на пути к решению задачи структурной организации белков. Это, пожалуй, самый важный вывод из проведенного нами комплексного теоретического и экспериментального исследования. Он, конечно, не решал еще многих проблем, но послужил надежным обоснованием дл следующего шага - анализа конформационных возможностей монопеп-тидов всех остальных стандартных аминокислот. [c.172]


    Боковые цепи. Результаты предшествующего рассмотрения в определенной степени предопределяют и ответ на вопрос о соответствии конформационных состояний боковых цепей аминокислотных остатков в белках и свободных молекулах метиламидов N-ацетил-а-аминокислот. В самом деле, трудно представить наличие полного соответствия у основных цепей и отсутствие такового у боковых цепей. Тем не менее анализ конформационных состояний последних с точки зрения ближних взаимодействий не лишен целесообразности. Для удобства рассмотрения боковые цепи аминокислот можно разделить на гидрофобные (неполярные) и гидрофильные (полярные). Конформации гидрофобных боковых цепей определяются прежде всего ван-дер-ваальсовыми взаимодействиями, которые могут иметь как стабилизирующий, так и дестабилизирующий характер, В первом случае они называются дисперсионными, или лондоновскими, взаимодействиями. У монопептидов из-за небольшого числа атомов в молекулах энергия дисперсионных взаимодействий невелика, и поэтому их конформационные состояния определяются в основном мощными силами отталкивания. У полярных боковых цепей значительную роль могут играть также (но не исключительно ) электростатические взаимодействия и водородные связи. Среди боковых цепей гидрофобных остатков можно выделить цепи, имеющие разветвление при атоме СР (Val, Не) и не имеющие такого разветвления. К последним относится группа аминокислотных остатков Phe, Туг, Тгр, His с ароматическими боковыми цепями. Изложенные в предшествующем разделе результаты теоретического конформационного анализа метиламида N-aцeтил- -фeнилaлaнинa (см. табл. 11,14) свидетельствуют о том, что в этой молекуле пространственные формы основной и боковой цепей взаимосвязаны каждой форме основной цепи соответствуют определенные энергетически выгодные положения заместителя, На рис, 11.26 представлена конформационная карта ср-у фенил аланинового монопептида, разделенная пунктирными линиями на области, [c.186]

    К одной из основных вычислительных процедур теоретического конформационного анализа принадлежит минимизация потенциальной энергии. Доскольку энергетические поверхности пептидов имеют сложный рельеф, результаты расчета могут зависеть от выбранного метода минимизации. Поэтому была проведена проверка надежности и эффективности работы Целого ряда алгоритмов, реализованных в библиотечных подпрограммах Математического обеспечения ЕС ЭВМ [128]. При проверке использовался набор начальных приближений для минимизации конформаций тетрапеп-Тидных фрагментов тертиапина (см. гл. 10). При минимизации функций [c.235]

    В представленном в этом разделе кратком описании расчетных методов нашли отражение основные тенденции развития конформационного анализа пептидов и белков в последнее время. Несмотря на многочисленность и видимое разнообразие новых теоретических разработок, их сближает ряд общих черт принципиального характера, причем тех же самых, что были присущи предшествующим теоретико-методологическим исследованиям. Отмечу лишь три таких особенности. Во-первых, практически все предложенные методы расчета исходят из предположения, что нативная трехмерная структура белка имеет самую низкую внутреннюю энергию. Поэтому конечная цель каждого метода состоит в установлении глобальной конформации молекулы по известной аминокислотной последовательности. Такое предположение, сформулированное более 40 лет назад, до сих пор не встретило каких-либо противоречий со стороны экспериментальных фактов и, следовательно, может считаться оправданным. Во-вторых, в последние годы, как и ранее, во всех случаях предпринимались попытки подойти к расчету глобальной конформации белка путем усовершенствования предсказательных алгоритмов, процедур минимизации и вычислительной техники. Надежды на решение структурной проблемы по-прежнему связываются не с более глубоким проникновением в молекулярную физику белка и разработкой соответствующих теорий, а главным образом с достижением в области методологии теоретического конформационного анализа и развитием компьютерной аппаратуры. Между тем такой подход в принципе не может привести к априорному расчету глобальной конформации белка. В разделе 2.1 уже указывалось, что перебор со скоростью вращательной флуктуации (10 с) всех мыслимых конформационных состояний даже у низкомолекулярной белковой цепи (< 100 остатков) занял бы не менее 10 лет. Следовательно, при беспорядочно-поисковом механизме сборка белка как в условиях in vivo в процессе рибосомного синтеза, так и в условиях in vitro в процессе ренатурации не может осуществляться через селекцию конформации всех локальных минимумов потенциальной поверхности. Реальные же возможности самых совершенных современных методов расчета ограничены независимым анализом тетра- и пентапептидов, рассчитанных четверть века назад. Ни один из существующих теоретических методов не в состоянии проводить конформационный анализ сложных олигопептидов, а тем более белков, без привлечения дополнительной информации - результатов прямого эксперимента, касающегося исследуемого объекта, или статистической обработки имеющихся структурных данных. В-третьих для всех предложенных методов расчета характерно отсутствие классификации пептидных структур, оправданной с физической точки зрения и [c.246]

    Разработка термодинамической бифуркационной теории свертывания белковой цепи, физической теории структурной организации природной аминокислотной последовательности, метода теоретического конформационного анализа, а также результаты расчета конформационных возможностей простейших производных двадцати стандартных а-амино-кислот и большого числа молекул с двумя и тремя аминокислотными остатками в цепи, представленные в первых двух частях книги, позволили перейти к изучению пространственного строения более сложных природных пептидных объектов. Главная цель исследования заключалась в количественной оценке вкладов средних межостаточных взаимодействий в конформационную энергию олигопептидов постепенно увеличиваюшейся длины и выяснении роли этих взаимодействий в структурировании фрагментов белковой цепи. [c.256]

    Перед тем как продолжить обсуждение количественных данных о ргруктурной организации природных олигопептидов, необходимо сказать 1есколько слов о некоторых особенностях исследований пространственного строения этих соединений, о возможностях экспериментального подхода и расчетных методов, о достоверности обсуждаемых результатов теоретического конформационного анализа. Отношение к теоретическим, расчетным данным, естественно, зависит от убежденности в том, что они если и не всегда количественно, то, во всяком случае, качественно правильно отражают наиболее характерные черты опытных фактов, явлений, закономерностей. Объективное представление о точности априорно рассчитываемых геометрических параметров молекул приобретает в данном обсуждении особый смысл, поскольку именно теоретический подход должен стать основой строгого решения необычных по своей общности, научной и практической значимости задач структурной и структурнофункциональной организацш природных пептидов и белков. [c.283]

    Для проверки теории пространственной организации олигопептидов, физической молекулярной модели и расчетной схемы априорного конформационного анализа были использованы два подхода. Первый из них не требует для оценки результатов расчета знания экспериментальных фактов о пространственной структуре молекулы. Он основан на выборе для теоретического исследования таких объектов, расчет которых содержит внутренний, автономный контроль своих результатов. Как показано ниже, можно считать с высокой степенью вероятности, что решение конкретной задачи при наличии подобного контроля доводится до конца только при получении правильных результатов. Во втором случае достоверность метода подтверждается путем сопоставления данных теоретического конформационного анализа олигопептидных фрагментов с геометрией соответствующих участков трехмерной структуры белка, установленной с помощью рентгеноструктурного анализа. Поскольку разработанная автором конформационная теория белковых молекул включает все элементы теории пространственной организации олигопептидных молекул, то полное совпадение расчетной конформации с нативной структурой белка можно считать убедительным доказательствам справедливости теоретического подхода к априорному расчету пространственного строения не только природных полипептидов, но и олигопептидов. [c.290]

    Результаты теоретического конформационного анализа указывают на возможность реализации у молекулы апамина ряда структур Они различаются между собой конформационными состояниями С-концевого фрагмента ys -His -NH2, которые отвечают некоторым из наиболее низкоэнергетических конформаций свободного тетрапептида Во всех случаях структура бициклической части апамина ys - ys - ys"- ys совпадает (за исключением боковой цепи Arg ) с глобальной конформацией свободного пентадекапептида Образование в единой структуре молекулы целого ряда контактов между фрагментами ys - ys - ys и ys -His -NH2, энергия которых у четырех лучших конформаций равна соответственно -12,0, -8,0, -9,0, -11,0 ккал/моль, не сопровождается их дестабилизацией Величины суммарной энергии внутри- и межостаточных взаимодействий у конформаций свободного фрагмента ys -His -NH2 и у соответствующих состояний в предпочтительных конформациях всей молекулы практически совпадают Это свидетельствует о том, что в Найденных структурах апамина имеет место согласованность между всеми видами взаимодействий [c.301]

    Каковы же ближайшие перспективы Можно ли, продолжая изучение Met- и Ьеи-энкефалинов и других пептидных гормонов в том же плане, получить со временем полную и объективную количественную информацию об их структурной организации и зависимости между структурой и функцией Чтобы ответить на этот вопрос, предположим, что такой информацией мы уже располагаем, и попытаемся представить, что она могла бы дать для понимания структурно-функциональной организации энкефалинов и описания механизмов их многочисленных функций. Как можно было бы логически связать данные, например, о 10 низкоэнергетических конформациях каждого нейропептида с приблизительно таким же количеством его функций Очевидно, установить прямую связь при неизвестных пространственных структурах рецепторов не представляется возможным. Число возможных комбинаций, особенно если учесть существование нескольких рецепторов (ц, а,5) для осуществления только одной опиатной функции энкефалина, слишком велико, чтобы надеяться даже в гипотетическом идеальном случае найти искомые соотношения интуитивным путем. Многие полагают, что к достижению цели ведет косвенный путь, заключающийся в привлечении синтетических аналогов, изучении их структуры и биологической активности. В принципе подобный подход вот уже не одно столетие применяется в поиске фармацевтических препаратов. Однако такой путь в его сегодняшнем состоянии не только длителен, сложен и дорогостоящ, но, главное, он не может привести к окончательному решению проблемы. Замена аминокислот в природной последовательности, укорочение цепи или добавление новых остатков, иными словами, любая модификация химического строения природного пептида, неизбежно сопровождается изменением конформационных возможностей молекулы и одновременно затрагивает склонные к специфическому взаимодействию с рецептором остатки, что сказывается на характере внутри- и межмолекулярных взаимодействий, в том числе на устойчивости аналогов к действию протеиназ. Для учета последствий химической модификации на характер внутримолекулярных взаимодействий можно использовать теоретический конформационный анализ и методы кванто- [c.352]

    Конформационный анализ секретина выполнен по представленной на рис. III.30 схеме, в которой порядок расчета фрагментов указан стрелками. Напомним, что при наличии согласованности всех видов внутримолекулярных взаимодействий способ разбиения аминокислотной последовательности на отдельные фрагменты и порядок расчета не имеют принципиального значения и не влияют на конечный результат. Схема теоретического конформационного анализа диктуется техническими, иногда интуитивными соображениями, а чаще всего подсказывается самим ходом решения задачи. Поэтому лишь в конце расчета становится ясным окончательный вариант разбиения цепи на участки и последовательность их анализа. Исследование конформационных возможностей N-концевого гептапептидного фрагмента секретина His -Thr было начато с детального анализа пространственного строения его трипептидных участков His -Ser -Asp и Thr -Phe -Thr . Затем при всех возможных сочетаниях найденных низкоэнергетических состояний трипептидов рассчитывались потенциальные поверхности гептапептида путем построения семейства конформационных карт ф4-у4 срединного остатка Gly . Значения двугранных углов ф4, Уд низкоэнергетических областей каждой конформационной карты и геометрия соответствующей комбинации предпочтительных конформаций свободных трипептидов служили исходными для минимизации структурных вариантов His -Thr . Для первого трипептида было составлено 125 начальных приближений, а для второго - 82. Результаты минимизаций структурных вариантов при изменении двугранных углов основной цепи (ф, V /, (О) и боковых цепей (х) свидетельствуют о слабой энергетической [c.374]

    Теоретический конформационный анализ секретина привел к такой ртруктурной ориентации молекулы, которая не исключает реализацию гормоном ряда разнообразных функций, требующих строго специфических. Взаимодействий с различными рецепторами. Выделены два вероятных семейства низкоэнергетических структур молекулы с точностью до значений двугранных углов вращения (или координат всех атомов) и величин. Энергии невалентных взаимодействий каждой структуры. Определение Истинной иерархии найденных оптимальных конформаций секретина [c.383]

    В 10-13 главах были обсуждены результаты теоретического конформационного анализа достаточно представительной группы олигопептидов Более полный перечень природных пептидов и их синтетических аналогов, пространственное строение которых рассмотрено автором данной монографии и сотрудниками до начала 1995 г., приведен в табл. 111.32. Напомним, что наш интерес к пространственной структуре сравнительно низкомолекулярных пептидов связан, прежде всего, с белками, изучение структурной организации которых требовало получения детального представления о характере и значении средних межостаточных взаимодействий и умения давать им правильную количественную оценку. Согласно бифур-кацинной теории (см. разд. 2.1) сборка белка начинается с образования на локальных олигопептидных участках аминокислотной последовательности конформационно жестких нуклеаций, разделенных лабильными участками Их формирование должно иметь много общих черт, если почти буквально не совпадать, с процессом, особенно на первых его стадиях, свертывания белковой цепи. Поэтому априорный расчет трехмерной структуры белка, математическое моделирование механизма спонтанной, быстрой и безоши- [c.384]


Смотреть страницы где упоминается термин Теоретический конформационный анализ: [c.135]    [c.156]    [c.157]    [c.160]    [c.161]    [c.164]    [c.181]    [c.213]    [c.240]    [c.241]    [c.245]    [c.267]    [c.271]    [c.285]    [c.285]    [c.287]    [c.290]    [c.293]    [c.333]    [c.336]    [c.343]    [c.363]    [c.365]    [c.394]    [c.400]    [c.401]    [c.420]   
Смотреть главы в:

Химия алифатических и алициклических нитросоединений -> Теоретический конформационный анализ




ПОИСК





Смотрите так же термины и статьи:

Конформационные

Конформационный анализ

Метод теоретический конформационного анализа

ТЕОРЕТИЧЕСКИЙ МЕТОД КОНФОРМАЦИОННОГО АНАЛИЗА ПЕПТИДОВ И БЕЛКОВ

Экспериментальные н теоретические подходы к конформационному анализу пептидов



© 2025 chem21.info Реклама на сайте