Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Складчатый лист

    В случае структуры, или структуры складчатого листа, полипептидные цепи растянуты, уложены параллельно друг другу и связаны между собой водородными связями. Остов цепи не лежит в одной плоскости, а вследствие небольших изгибов при а-углеродных атомах образует слегка волнистый слой. Боковые группы располагаются перпендику- [c.249]


    В 1951 г. Полинг [150, 151] разработал две относительно простые структурные модели, спиральную и складчатого листа, объясняемые исключительно планарностью пептидной связи и водородными связями между пептидными группами и образующие основу для построения высших структур. Модели нашли свое подтверждение в пространственно-структурных исследованиях Перутца [152]. [c.377]

    Структура складчатого листа [c.379]

Рис. 3-15. Антипараллельная структура складчатого листа. Рис. 3-15. <a href="/info/97335">Антипараллельная структура</a> складчатого листа.
    В антипараллельных, прилегающих одна к другой полипептидных цепях преобладает повторяющаяся последовательность -01у-8ег-01у-А1а-01у-А1а-. Цепи образуют антипараллельную /3-структуру, стабилизированную оптимальным образованием водородных связей между СО- и ЫН-группами. Прн этом остатки глицина выступают с одной, а серина и аланина — с другой стороны складчатого листа. Расстояния между отдельными листами равны примерно 0,35 и 0,57 нм. [c.422]

    Вскоре появляется знаменитая серия работ Л. Полинга и Р. Кори (1951 г.), в которых авторы рассмотрели все ранее известные структурные модели полипептидов, в том числе предложенные Брэггом, Кендрью и Перутцем, и отвергли их. Вместо них они предложили две новые низкоэнергетические регулярные пространственные формы - а-спираль и р-складчатый лист. Один виток а-спирали включает 3,6 аминокислотных [c.70]

    Предложенные модельные описания механизма свертывания белка неполны, непоследовательны и противоречивы. Они, по существу, не отвечают ни на один из принципиальных вопросов, возникающих при изучении уникального в природе молекулярного явления самопроизвольного зарождения и развития порядка из хаоса. Для приближения конечных результатов теоретического рассмотрения процессов сборки к наблюдаемым экспериментальным данным в расчеты привносятся (без объяснения причин и механизма возникновения) никак не следующие из статистической физики и равновесной термодинамики представления об эмбрионах, ядрах и нуклеациях или вводятся известные из опыта структурные элементы нативных конформаций белков, как правило, (Х-спирали и р-складчатые листы. [c.83]

    В рассмотренной конформационной теории белка не постулируется образование в процессе структурной самоорганизации вторичных, регулярных структур. а-Спирали и р-складчатые листы должны автоматически появляться по ходу расчета на тех участках последовательности, где они оказываются самыми предпочтительными по энергии. Не привлекаются также данные рентгеноструктурного анализа белков и результаты их статистической обработки. Физическая теория и соответствующий расчетный метод исходят только из отмеченных выше четырех принципов, знания аминокислотной последовательности и валентной схемы белковой молекулы. Таким образом, в отношении пространственного строения белка теория является априорной. Предсказание трехмерной структуры строится на количественной оценке взаимодействий между всеми валентно-несвязанными атомами. При этом, однако, не требуется делать специальных предположений о роли в пространственной организации белковой молекулы водородных связей, ионных пар, дисульфидных мостиков и других видов взаимодействий. Так называемые гидрофобные [c.106]


    Быть может, по этим или иным причинам Коэн, Стернберг и Тейлор [156-158] не стали обращаться к предсказательным алгоритмам, а сразу приступили к реализации второго пункта схемы, выбрав для демонстрации возможностей предлагаемого ими метода белки, изученные рентгеноструктурно, и взяв всю информацию о геометрии вторичных структур непосредственно из эксперимента. Они рассмотрели все способы упаковки -структурных сандвичей в 11 иммуноглобулиновых доменах, содержащих от 6 до 9 -складчатых листов. Для каждого домена рассчитано порядка 10 -10 различных сочетаний опытных вторичных структур. Количество [c.508]

    Применение этого показателя не вызывало бы особых возражений, не будь следующих трех обстоятельств. Во-первых, если бы а-спирали. -структуры и нерегулярные формы входили в белковые третичные структуры приблизительно в равных долях. Известно, что это условие не соблюдается и среднее содержание спиралей не превышает 30%, -складчатых листов - 20%, а нерегулярных сегментов - 50%. Во-вторых, если бы оценка показателей качества предсказания трех видов структур делалась не последовательно, а одновременно, т.е. независимо. Несоблюдение обоих условий ведет к тому, что при идентификации а-спиралей [c.516]

    Третичная структура белка для глобулярных белков представлена сложной структурой, сходной с клубком или глобулой. Структура в этой глобуле поддерживается водородными, ионными, гидрофобными связями. Иногда одна часть структуры представлена спиралью, другая -складчатым листом, чередующимся с линейной последовательностью АК. Фрагменты такой структуры, имеющие определенное строение, называют доменами (например, спиральный домен). Третичная структура фибриллярных белков - более сложная спираль (двойная или тройная), иногда ее, например в молекуле коллагена, называют суперспиралью. [c.25]

    На рис. 5.3 приведены кривые зависимости между углами ф, ijj) (рис. 2.2) и параметрами спирали d и п. Спираль с п <2 невозможна. Имеется всего лишь несколько линейных групп, в которых нет стерических затруднений и которые стабилизированы водородными связями либо в пределах цепи (например, а-спирали), либо между соседними цепями (например, Р-складчатый лист, коллаген). Параметры наиболее важных линейных групп даны в табл. 5.1. [c.84]

    З-Структура — конформация полипептидной цепи, при к-рой ее параллельные или антипараллельные отрезки взаимодействуют с образованием системы водородных связей ЫН...О=С, ориентированных перпендикулярно ходу цепи. Два или неск. таких отре.чков формируют структуру (3-складчатого листа . Во мн. белках (карбокснпептидаза [c.109]

Рис. 2. Схематич. изображение р-структур слева-антипараллелышй, справа-параллельный складчатый лист. Рис. 2. <a href="/info/201816">Схематич</a>. изображение р-структур слева-антипараллелышй, справа-параллельный складчатый лист.
    КЕРАТИНЫ (от греч. keras, род. падеж keratos-por), структурные фибриллярные белки, состоящие из параллельных полипептидных цепей, имеющих конформацию а-спирали или -структуры (структуры складчатого листа)-соотв а-К и -K. [c.372]

    Правила структурной организации глобулярных белков рассмотрены Шульцем [81]. Согласно им, в структ фе таких белков следует выделять большее число уровней организации. Иерархия берет свое начало от аминокислотной последовательности. Затем следует вторичная структура с регулярной укладкой полипептидной цепи, характеризующейся максимальным образованием водородных связей. Вторичная структура может образовывать до 75% всей полипептидной цепи. Иногда в молекуле белка можно выделить агрегаты вторичной структуры (сверхвторичная структура), являющиеся регулярными образованиями из нескольких участков полипеп-тидных цепей, например двойная а-спираль или складчатый лист-спираль. Пример более высокой ступени организации глобулярных белков — образование доменов. Они возникают у крупных белков и характеризуются как независимые пространственные структуры. Иммуноглобулины, например, образуют при соответствующем сворачивании полнпептидных цепей от 2 до 4 доменов. В химотрипсине активный центр находится внутри, между двумя доменами. В данном случае домены имеют структуру складчатого листа-цилиндра и связаны один с другим лишь одной полипептидной цепью. И наконец, глобулярные белки, построенные из нескольких доменов, могут упаковываться в еще более крупные структурные образования. Возникающие при этом агрегаты обычно построены симметрично, причем структура входящих в их состав мономеров, вероятно, не меняется. [c.364]

    В зависимости от параллельности или антипараллельности хода двух соседних цепей различают два вида структур параллельную (а) и антипа-раплельную (б) структуры складчатого листа. [c.380]

    Соседние полипептидные цепи, идущие в противоположном направлении, в пространственном представлении (рис. 3-15) обнаруживают плисси-рованность , причем боковые радикалы аминокислотных остатков стоят попеременно с разных сторон складчатого листа. Штрихами показаны водородные связи. Соответствующие пары углов и ф для параллельной и антипараллельной структур могут быть получены из рис. 3-12. [c.380]


    Как в случае спиральной структуры, так и структуры складчатого листа пары углов (риф для всех аминокислотных остатков лежат в одной точке диаграммы Рамачандрана (рис. 3-12). Напротив, в случае неупорядоченной конформации эти пары углов для различных аминокислотных остатков не находятся в одной точке, а распределяются по разрешенной области диаграммы. Вследствие этого образуется огромное разнообразие конформаций, причем распределение всех комбинаций углов не является равномерным статистическим в математическом смысле. Ограничения возможных конформаций вытекают из взаимного расположения имеющихся боковых групп, а также из их взаимодействий с растворителем. По энергетическим причинам это приводит к предпочтению определенных локальных конформаций. [c.381]

    Поскольку кристалл лизоцима характеризуется тетрагональной сингонией (пространственная группа Р 4з 2,2) и большая часть углов равна О или 180°, потребовалось измерить всего 9000 рефлексов. 42% полипептидной цепи представляют собой а-спираль, некоторые участки цепи в неспнральной области образуют /3-структуры. Так, например, участок 41 — 54 дает антнпараллельную структуру складчатого листа. Субстратсвязывающий центр фермента лежит в длинном желобе на внешней стороне и охватывает минимум 12 совместно действующих аминокислотных остатков (рис. 3-29). [c.407]

    У структурных белков находят следующие типы конформаций полипептидных цепей а-спираль, -структуру складчатого листа и суперспирапь. Важнейшие представители этих белков — кератины, белки шелка и коллагены. В ряде других структурных белков особые физические свойства достигаются благодаря трехмерным сшивкам полипептидных цепей ковалентными мостиками. Резилин, белковый компонент хитиновых пластинок, содержащийся, в частности, в местах причленения крыльев насекомых. [c.420]

    Выше отмечалось, что, начиная с Хаггинса, огромную роль в стабилизации пространственной формы белковой цепи стали отводить пептидным водородным связям. Считалось, что именно они формируют вторичные структуры - а-спираль и р-складчатые листы. Но что в таком случае удерживает эти структуры в глобуле и под влиянием каких сил белковая цепь свертывается в нативную конформацию в водной среде, где пептидные водородные связи N-H...O= и электростатические взаимодействия малоэффективны Можно поставить вопрос иначе. Почему внутримолекулярные взаимодействия у природной гетерогенной аминокислотной последовательности превалируют в водном окружении над ее взаимодействиями с молекулами воды Фундаментальное значение в структурной организации белковой глобулы стали отводить так называемым гидрофобным взаимодействиям. Само понятие возникло в начальный период изучения коллоидного состояния высокомолекулярных веществ, в том числе белков. Первая теория явления, правда, не раскрывающая его сути, предложена, в 1916 г. И. Ленгмюром. Ему же принадлежит сам термин и разделение веществ на гидрофобные, гидрофильные и дифиль-ные. Природа гидрофобных взаимодействий была объяснена У. Козманом (1959 г.). Он показал, что низкое сродство углеводородов и углеводородных атомных групп к водному окружению обусловлено не неблагоприятными с энергетической точки зрения межмолекулярными контактами, а понижением энтропии. На энтропийный фактор обращали внимание еще в 1930-е годы для объяснения причин образования мицелл моющих средств в водных коллоидных растворах (Дж. Батлер, Г. Франк, Дж. Эдзал), однако такая трактовка формирования компактных структур не была перенесена на белки. Впервые это сделал Козман, поэтому гидрофобная концепция носит его имя. [c.73]

    В анализе белков, однако, требовалось рассмотрение не единичных структурных вариантов элементарных звеньев (пусть и правильно предсказанных) гомополипептидов, а множества, причем не независимо, а в сочетании друг с другом. Здесь важно было не упростить расчетную модель, не выхолостить физический смысл и не свести ее к представлению о пространственной структуре белка как ансамбле регулярных канонических форм а-спиралей и (i-складчатых листов. От этого ложного шага автора предостерегли результаты исследования Д. Филлипса трехмерной структуры лизоцима [55], После миоглобина и гемоглобина он бььт третьим белком, у которого было расшифровано с помощью рентгеноструктурного анализа молекулярное пространственное строение. И если трехмерные структуры первых двух белков содержали не менее 15% а-спиральных остатков, то структура лизоцима оказалась существенно [c.108]

    Для поиска нуклеаций были выбраны все перекрывающиеся по трем остаткам тетрапептидные фрагменты тертиапина. Тетрапептидный участок является оптимальным с двух точек зрения. При соответствующих упрощениях, о которьгх говорится ниже, анализ тетрапептида не требует предварительного рассмотрения его фрагментов, и в этом смысле он максимален из наиболее простых. В то же время у тетрапептида уже может обнаружиться тенденция к образованию структур, существенно выигрывающих по внутренней энергии. На более коротких участках не обнаруживаются решающие энергетические различия между формами основной цепи, не проявляется, например, ряд взаимодействий, существенных для стабилизации а-спирали и -складчатого листа. При предварительном анализе тетрапептидных фрагментов для каждого остатка учитывалась только часть его возможных конформаций, выбор которых ограничивался следующим образом. Во-первых, не учитывались конформации всех аминокислотных остатков, кроме Gly, в области L в R- и В-областях выбиралось по одной паре значений углов ф и у. Во-вторых, вначале перебор конформационных состояний боковых цепей проводился только по углу а значения других углов предполагались такими, которые чаще встречаются в белках (Lys, Arg - Xi, Хз. Ха 180° Пе -Хг 180° Тф - Хг  [c.307]

    Met- и Ьеи-энкефалины являются теми, пока еще редкими линейными олигопептидами, которые удалось закристаллизовать и исследовать с помощью рентгеноструктурного анализа. Впервые это было сделано Г. Смитом и соавт. [52, 53, 176]. Согласно полученным данным, кристаллическая структура Ме1-энкефалина построена из димеров, образующих антипараллельные -складчатые листы. Молекулы димера имеют одинаковые конформации основных цепей, близкие конформации боковых цепей остатков Туг и Phe, и неупорядоченные, отличающиеся друг от друга состояния боковых цепей остатка Met (рис. 1П.25,д). Кристаллическая решетка Ьеи-энкефалина изоморфна решетке Met-энкефалина и также состоит из димеров, молекулы которых отличаются ориентациями боковых цепей Туг, Phe и Ьеи (рис. Ш.25,б). В кристаллах Ьеи-энкефалина, исследованных позднее И. Карле и соавт. [54, 55], идентифицированы четыре разных конформера, имеющих одинаковое пространственное строение основных цепей и различное положение всех боковых цепей (рис. 1П.26). В других рентгеноструктурных исследованиях кристаллических энкефалинов [177-179] наряду с развернутыми структурами были обнаружены также свернутые конформации молекул. [c.344]

    Конформационный анализ циклического декапептида грамицидина S проводился рядом исследователей [292-297]. В табл. III.35 значения двугранных углов ф, у основной цепи молекулы, рассчитанные М. Дигертом и соавт. [292], П. Де Сантисом и А. Ликвори [294], Ф. Момани и соавт. [296], Р. Скоттом и соавт. [297], сопоставлены с результатами исследований спектров ЯМР, КД, ИК [298, 299] и данными рентгеноструктурного анализа [300]. За одним исключением [296], между теоретическими и экспериментальными моделями нет значительных различий. И те и другие привели к структуре грамицидина S, состоящей из двух (3-складчатых листов, соединенных двумя (3-изгибами и скрепленных четырьмя поперечными водородными связями. По форме основной цепи приведенные в табл. Ш.35 конформации находятся в удовлетворительном согласии с кристаллической структурой гидратированного комплекса грамицидина S с мочевиной [301], а также данными двумерной ЯМР-спектроскопии [302]. [c.395]

    В последующей работе Н. Гё и Г. Абе [60] детально рассмотрели статистико-механическую модель локальных структур, идея которой уже прослеживалась в изложенных только что исследованиях Н. Гё и Г. Такетоми [57-59]. Под локальной структурой понимается конформация участка полипептидной цепи, которая образуется на определенной стадии процесса свертывания и которая без существенных изменений входит в нативную конформацию белка. В отличие от общепринятого представления о том, что сборка полипептидной цепи начинается с образования вторичных структур, и составляющего основное содержание процесса, а также инициирующего его последующее развитие, Гё и Абе априори не отдают предпочтения ни одной локальной структуре, регулярной или нерегулярной. Наличие а-спиралей, Р-складчатых листов, изгибов и прочих образований оценивается их статистическими вкладами и статистико-механическим поведением всей белковой молекулы посредством парциальной функции. В этой функции не учтен вклад стабилизирующих контактов между локальными структурами на отдельных участках цепи. Отсюда и название анализируемого представления о процессе белкового свертывания как модели невзаимодействующих локальных структур По существу, она аналогична бусиничной модели без подвесок Кунтца и соавт. [32], только в данном случае Гё и Абе представляют белковую цепь не в виде отдельных аминокислотных остатков, аппроксимированных жесткими сферами, а в виде целых конформационно жестких образований, каждое из которых включает непрерывный участок аминокислотной последовательности. Предположение об отсутствии взаимодействий между ними позволяет рассчитать парциальную функцию модели. Но даже в этом случае непременными условиями являются знание нативной конформации, которая обязательно должна быть однодоменной, и предположение [c.492]

    Стадия взаимодействия вторичных структур должна следовать за стадией их образования. Следовательно, до выработки геометрических критериев упаковки вторичных структур в супервторичные необходима идентификация а-спиралей и р-складчатых листов, описание процессов их идентификации, развития и терминации. Задачи, перечисленные в работе [140], предполагаются решенными, что, как известно, не соответствует действительности. Поэтому модель Птицына описывает не весь процесс белкового свертывания, а лишь упаковку вторичных структур, т.е. завершающую стадию, быть может, не отвечающую соответствующей стадии реального механизма самоорганизации. Следует также отметить несовместимость предложенной модели с одним из постулируемых в этой же работе положений. Так, автор, рассматривая вопрос об идентификации а-спиралей и Р-структур, исходит из существования корреляций между вторичными структурами и аминокислотной последовательностью, а обсуждая образование из них супервторичных структур, утверждает отсутствие таких корреляций. В основу поиска геометрических критериев упаковки вторичных структур положена простейшая полипептидная цепь - гомополимер из аминокислот с гидрофобными боковыми группами. Предполагается, что такая цепь в водном окружении обладает вторичными структурами, стабилизированными пептидными водородными связями, и супервторичной и третичной структурой, стабилизированной гидрофобными взаимодействиями боковых цепей а-спиралей или Р-складчатых листов. Реальное поведение гомополипептидов в растворе не дает, однако, оснований для подобных предположений [25, 142-144]. Молекулы гомополипептидов, как и молекулы других синтетических полимеров, имеют огромное количество близких по энергии непрерывно флуктуирующих в [c.504]

    Большое влияние на специалистов, разрабатьшающих алгоритмы предсказаний а-спиралей и р-складчатых листов и на их основе - гипоте- [c.506]

    В течение многих лет выделение в кристаллических структурах глобулярных белков а-спиралей и -складчатых листов делалось в значительной мере произвольно, без использования количественных критериев. Необходимость в них не ощущалась бы, если бы в нативных конформациях белков вторичные структуры были действительно регулярными. Поскольку этого нет, то их идентификация субъективна и существенно отличается у разных авторов. Например, в лизоциме Чоу и Фасман [139] к а-спиралям и -структурам относят соответственно 54 и 21 остаток, а Бэржес, Поннусвами и Шерага [39] - 46 и 4 в субтилизине BPN (отнесения работы [39] даны в скобках) - 86 (69) и 27 (44), папаине - 54 (50) и 30 (21). Подобных примеров можно привести много. [c.510]

    Б. Рост и К. Сандер решение видят в отказе от предсказания конформационных состояний отдельных остатков последовательности в пользу вторичных структур у целых сегментов, используя данные о гомологичном белке, трехмерная структура которого известна [222]. Сравнение 130 пар структурно гомологичных белков с отличающимися аминокислот-яыми порядками показало, что значительное отклонение в положениях и цлинах сегментов вторичных структур во многих случаях может происходить в пределах приблизительно одинаковых пространственных форм свернутых цепей. Иными словами, отличия в двух близких аминокислотных последовательностях в большей мере отражаются на вторичных структурах, чем на третичных. Поэтому, полагают авторы, важна не локализация а-спиралей, -складчатых листов, -изгибов и Р-петель с точностью до одного аминокислотного остатка, а их ориентировочное отнесение, совместимое с нативной конформацией гомологичного белка, установленной экспериментально. Включение информации о белковых семействах ведет к увеличению показателя качества Q3 до 70,8%, что соответствует точности экспериментального определения вторичных структур с помощью спектров КД. Однако в развитом Ростом и Сандером методе упрощение проблемы предсказания вторичных (ГГруктур и на их основе третичной столь велико и бесконтрольно, что грани между благими желаниями авторов, субъективным восприятием полученных результатов и декларируемыми количественными показателями точности становятся неразличимы. [c.519]

    Возражения принципиального порядка вызывает также выбранный Меклером и Идлис способ трансляции гипотетической "жидкой" формы белка в "твердую трехмерную структуру с помощью кода П-К. Авторы работы [352] утверждают, что согласно коду П-К аминокислотные остатки, принадлежащие к одному из трех компонентов связности графа кода А-А [355], узнают друг друга и соединяются посредством так называемых П-К-связей, являющихся пептидными водородными связями NH...O а-с1шралей и -складчатых листов. Образование совокупности таких связей и вызывает конформационную перестройку всей белковой глобулы и вместе с сохранившимися А-А-связями стабилизирует "твердую" трехмерную структуру белка. [c.538]

    Эти Карты часто называют картами Рамачандрана . а — карта глицина, не имеющего боковой цепи, с использованием модели жестких сфер с нормальными и с нижними граничными (---) контактными расстояниями, приведеинымн в табл. 2.1. В некоторых областях указаны запрещенные контакты. Обозначения атомов даны на рис. 2.2. б — карта аминокислот, содержащих -атомы, построенная с использованием той же модели жестких сфер. Указаны конформации правой а-спиралн, Р-складчатого листа н коллагена. Отмечены стерические затруднения, вызванные -атомом, которые сводят большую область глнцина к указанной иа рисунке меньшей области. Три разрешенные области иногда обозначают как — правая а-спираль, область вокруг значка а, aL — Левая а-спираль, область (0, 1))) (-l-60 -1-60 ), е — вытянутая цепь, область вокруг значка р. В предположении модели жестких сфер (- - - нормальные радиусы ---радиусы, отвечающие нижним границам) указаны области, разрешенные для поли-Ь-чис-алаиина. Конформация, приведенная на рис. 2.6, обозначена х, а конформация, отвечающая поли-Ь-пролииу I (полностью цис), обозначена как х, обведенный кружком. [c.31]

    Модель жестких сфер — хорошее приближение. Данные Рамачандрана и сотр. [28, 29], выражаемые -картой (которую часто называют карта Рамачандрана , см. рис. 2.3, б), подтверждаются результатами, полученными при исследовании кристаллических глобулярных белков. На рис. 2.4 сведены все ф и ф-углы, найденные в 13 белках. Самая высокая плотность распределения экспериментальных точек наблюдается вблизи (—60 , —60 ) в положении правой а-спирали, что отражает высокое содержание а-спиралей в глобулярных белках. Другой максимум в распределении находится вблизи (—90°, -г 120 ) и отвечает вытянутой цепи с остатками, образующими р-складчатый лист. Поскольку плотность вблизи (—90 , 0 ) также довольно высока, отталкивание между N,- и Hj i не настолько существенно, как это следует из модели жестких сфер. [c.32]

    Вытянутые полипептидные цепи могут взаимодействовать между собой посредством водородных связей и образовывать слоистые структуры. Кроме а-спиралей в качестве возможных упорядоченных структур полипептидной цепи, образованных водородными связями, Полинг и Кори [204) постулировали плоские параллельный и антипараллельный Р-складчатые листы (рис. 5.8). И в том, и в другом типах р-структур цепь образует линейную группу с одним остатком в качестве элемента группы, (спиральные) параметры которой приведены в табл. 5.1. Углы (ф, г )) в обоих случаях находятся в разрешенной области (рис. 2.3), а образуемые водородными связями диполи находятся на одной линии. Расположение водородных связей схематически показано на рис. 5.8, б и 5.8, в. Если смотреть вдоль полипептидного остова, видно, что боковые цепи ориентированы поочередно то по одну, то по другую стороны средней плоскости складчатого листа, причем связи —Ср приблизительно перпендикулярны плоскости (рис. 5.8, а). Возможны смешанные па-раллельно-антипараллельные слои, для чего требуется некоторое изменение углов (ф, г )). [c.93]

    Р-Складчатый лист. Водородные связи указаны пунктирными линиями, а направления цепей — стрелками, -атомы обозначены точками. а — складчатая структура (нескрученного нлн плоского) антнпараллельного листа. На-яравлення связей показаны короткими линиями при Сд -атомах они пер- [c.94]


Смотреть страницы где упоминается термин Складчатый лист: [c.380]    [c.71]    [c.109]    [c.228]    [c.245]    [c.327]    [c.495]    [c.507]    [c.508]    [c.513]    [c.513]    [c.539]    [c.93]   
Смотреть главы в:

Принципы структурной организации белков -> Складчатый лист

Принципы структурной организации белков -> Складчатый лист




ПОИСК





Смотрите так же термины и статьи:

Лист Листья

Листов



© 2025 chem21.info Реклама на сайте