Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рибонуклеазы синтезы

    Поскольку обработка реакционной смеси после образования каждой последующей пептидной связи (удлинения полипептида) очень упростилась, стало возможным автоматизировать процесс синтеза, что, таким образом, привело к ускорению полипептидного синтеза. Таким методом был проведен первый химический синтез фермента (панкреатическая рибонуклеаза быка, 124 аминокислотных остатка). [c.90]


    Все многообразие белков образовано 20 различными аминокислотами при этом для каждого белка строго специфичной является последовательность, в которой остатки входящих в его состав аминокислот соединяются друг с другом. Найдены методы выяснения этой последовательности в резу.пьтате уже точно установлено строение ряда белков. И самым замечательным достижением в этой области явилось осуществление синтеза из аминокислот простейших белков как уже указывалось, в 50—60-х годах XX века синтетически получены гормон инсулин и фермент рибонуклеаза. [c.586]

    В 1969 г. Меррифилд сделал попытку осуществить химический синтез фермента рибонуклеазы. [c.344]

    Существенным подтверждением полипептидной теории строения белка является возможность синтеза чисто химическими методами полипептидов и белков с уже известным строением инсулина-51 аминокислотный остаток, лизоцима-129 аминокислотных остатков, рибонуклеазы -124 аминокислотных остатка . Синтезированные белки обладали аналогичными природным белкам физико-химическими свойствами и биологической активностью. [c.51]

    Синтез олигорибонуклеотидов ферментативным путем осуществляют обьино с использованием рибонуклеаз (РНаз) или полинуклеотидфосфорилаз (ПНФаз). В первом случае р-цию осуществляют по схеме  [c.301]

    В настоящее время путем синтеза получают множество органических соединений. Более того, оказалось, что многие органические вещества гораздо проще и дешевле получать синтетически, чем выделять из природных продуктов. Наибольшим успехом химии 50—бО-х годов XX века явился первый синтез простых белков — гормона инсулина и фермента рибонуклеазы. Таким образом доказана возможность синтетического получения даже белков — наиболее сложных органических веществ, являющихся непременными участниками жизненных процессов. [c.549]

    Если проанализировать все проведенные синтезы Меррифилда (табл. 2-9), то станет ясно, что это в основном работы в период между 1968 и 1972 гг. В это время во многих новых лабораториях — а их количество в США со времени опубликования концепции Меррифилда увеличилось в десять раз — начали проводить синтезы пептидов на носителях, чему в значительной степени способствовала коммерческая доступность синтезаторов. Очевидно, разочаровывающие результаты при попытках синтеза белков привели к реалистической оценке возможностей метода. Попытка синтеза лизо-цима привела, например, к смеси полипептидов, которая обладала 0,5—1% специфической активности [455]. Гораздо успешнее был синтез рибонуклеазы А [449], хотя и в этом случае выход составлял всего 16%. На этом ферменте с помощью твердофазной техники проведено интересное изучение взаимосвязи строения и активности [467]. Несомненно, что биологическая активность не является критерием гладкого течения твердофазного синтеза. Синтез белка, состоящего из 188 аминокислот, который сначала считали гормоном роста человека, дал смесь белков с заметной биологической активностью. Несколько позднее было, однако, показано, что положенная в основу синтеза первичная структура не подтвердилась [453, 468]. Синтез длинноцепочечных пептидов и белков по методу Меррифилда в настоящее время и в обозримом будущем уже не может отвечать тем высоким требованиям, которые предъявляются к синтезу биологически активных соединений. [c.193]


    Ферменты оказывают высокоспецифическое действие, что также доказывает их белковую природу, поскольку белки в иммунологическом отношении отличаются крайне высокой специфичностью. Наконец, прямым доказательством белковой природы ферментов является лабораторный синтез первого фермента—рибонуклеазы, осуществленный в 1969 г. в лаборатории Б. Меррифилда в Нью-Йорке .  [c.119]

    Рибонуклеаза по модели, описанной Картой и полученной с разрешением 0,2 нм в результате синтеза Фурье для семи различных производных с тяжелыми атомами (7294 измерения), представляет собой молекулу почкообразной формы размером 3,8 X 2,8 X 2,2 нм. Активный центр фермента находится в почечной борозде — характерной щели, разделяющей молекулу иа две половины и содержащей ответственные за каталитическую активность остатки гистидина (положения 12 и 119) и лизина (положения 41 и 7). [c.402]

    Процесс свертывания может быть описан с помощью обычных понятий физической химии. В процессе синтеза на рибосоме или после его завершения полипептидная цепь свертывается в свою нативную глобулярную структуру. Как правило, процесс свертывания происходит самопроизвольно в том смысле, что для его осуществления не требуется действия дополнительных факторов, например ферментов или присутствия рибосом. Наиболее убедительное подтверждение именно такого характера свертывания было получено после полного химического синтеза фермента рибонуклеазы [410, 4111. [c.177]

    Этот автоматический синтез на твердой фазе состоял в последовательном включении всех 124 аминокислотных остатков в строгом соответствии с последовательностью аминокислот (с первичной структурой) естественного фермента—рибонуклеазы поджелудочной железы .  [c.119]

    Предполагают, что формирование активного центра фермента начинается уже на ранних этапах синтеза белка-фермента (см. главу 14) на рибосоме, когда линейная одномерная структура пептидной цепи превращается в трехмерное тело строго определенной конфигурации. Образовавшийся белок приобретает информацию совершенно нового типа, а именно функциональную (в частности, каталитическую). Любые воздействия, приводящие к денатурации, т.е. нарушению третичной структуры, приводят к искажению или разрушению структуры активного центра и соответственно потере ферментом каталитических свойств. Если при подходящих внешних условиях удается восстановить нативную трехмерную структуру белка-фермента (ренатурировать его), то восстанавливается и его каталитическая активность. Это было показано впервые на примере рибонуклеазы поджелудочной железы (см. рис. 1.13). [c.125]

    В отличие от приведенного примера, когда на поверхности полимера была сначала зафиксирована Ы-защищенная С-концевая а-аминокисло-та, при твердофазном методе синтеза возможно также сначала нанести на поверхность полимера активированную Ы-концевую а-аминокислоту и вести процесс пептидного синтеза с последующими активированными а-аминокислотами. С помощью твердофазного метода синтеза на носителях в 1969 г. в течение нескольких недель удалось осуществить полный синтез фермента рибонуклеазы, насчитывающего 124 а-аминокислотных остатка. [c.655]

    Твердофазная техника приводила к существенной экономии труда и времени, необходимых для пептидного синтеза. Так, например, ценой значительных усилий Хиршмен с 22 сотрудниками [5f] завершили вьщающийся синтез фермента рибонуклеазы (124 аминокислотных остатка) с помошью традиционных жидкофазных методов. Почти одновременно тот же белок был получен путем автоматизированного твердофазного синтеза [5g], Во втором случае синтез, включающий 369 химических реакций и 11 931 операцию, был вьшолнен двумя участниками (Гатте и Меррифилд) всего за несколько месяцев (в среднем до шести аминокислотных остатков в день присоединялись к растущей полипептидной цепи — фантастический темп ). Последующие усовершенствования позволили построить полностью автоматический синтезатор. Таким образом, дерзновенная и волнующая проблема пептидного синтеза, решение которой ранее требовало огромных затрат труда и времени, теперь может считаться практически решенной (по крайней мере, для не слишком сложных пептидов). [c.302]

    Вновь синтезированную ДНК идентифицируют по метке вводимой в ближайшую к сахарному кольцу фосфатную группу нуклеозидтрифосфата, и по метке , вводимой с тимидином. После осаждения кислотой и отмывки осадка от адсорбированных на нем растворимых радиоактивных дезоксирибонуклеоти-дов получается чистая радиоактивная ДНК. Этот продукт содержит все четыре дезоксирибонуклеотидных остатка, связанных 3 —5 -диэфирной связью, так же как в ДНК. После проведения реакции вновь синтезированная ДНК составляет более 90% всей ДНК в реакционной смеси, т. е. количество ее увеличивается в 10—20 раз. Как седиментационные и вискозиметрические исследования нативного и денатурированного материалов, так и измерения скорости увеличения поглощения после воздействия ДНК-азой указывают на то, что ДНК-затравка и вновь синтезированная ДНК очень близки по своим свойствам. В качестве затравки может быть использована ДНК животных, растений, бактерий или вирусов. РНК, денатурированная кислотой ДНК или ДНК, обработанная ДНК-азой, оказываются не эффективными. Нельзя также использовать дезоксирибонуклеозиддифос-фаты вместо моно- или трифосфатов или же рибонуклеотиды вместо дезоксирибонуклеотидов. Если в раствор добавляется рибонуклеаза, синтез проходит нормально, но добавление в раствор пирофосфата подавляет его, так как в присутствии пирофосфата процессы, обратные реакции синтеза, протекают более интенсивно. Синтез идет по следующей схеме  [c.330]


    Здесь целесообразно отметить, что в груине Бреслоу [179] синтезирован (З-циклодекстринбисимидазол для моделирования рибонуклеазы А (РНаза А) (гл. 3). В основе использованного подхода лежит синтез экранированного дисульфонатного производного, полученного ранее Табуши и сотр. [180, 181]. [c.307]

    Последовательность расположения аминокислотных остатков в полипептидной цепи создает первичную структуру белка она установлена в настоящее время для ряда природных белков. Осуществлен и синтез ряда белков, например инсулина (51 аминокислота), рибонуклеазы (124 аминокислотных остатка). Синтезы подобного рода требуют последовательного осуществления сотен химических операций. Большую помощь оказывает при этом метод твердофазного синтеза, предложенный Мэрифильдом в 1963 г. полипептидная цепь постепенно наращивается на полимерном носителе (полисти-рольной смоле) и лишь после завершения синтеза снимается е носителя. [c.635]

    Познание химического сгрое-ния белков позволило решить вопрос о их синтезе. В этом отношении также достигнуты большие успехи. В настоящее время используют разработанный в начале 60-х годов твердофазный синтез. При этом первая аминокислота закрепляется на полимерном носителе (специальной полнстирольной смоле) и к ней последовательно подшиваются все новые и новые аминокислоты. По окончании синтеза готовая полипептидная цепь снимается с носителя. Таким методом были синтезированы инсулин, рибонуклеаза, а за ними и многие другие белки. Для синтеза рибонуклеазы необходимо было осуществить более десяти тысяч отдельных операций. В настоящее время разработаны автоматы, осуществляющие все необходимые операции по заданной программе. [c.336]

    Кислый аминополисахарид гепарин [М> 10 ООО) известен в качестве антикоагулянта крови. Кроме того, он применяется в биохимии как ингибитор рибонуклеаз. Это его качество, по-видимому-отражает некоторое сходство полимера, содержащего две-три суль, фогруппы на каждую дисахаридную структурную единицу, с РНК-Две эти особенности определили использование гепарина в качеств, лиганда для аффинной хроматографии факторов коагуляции крове и (особенно широко) для очистки белков, взаимодействующих и нуклеиновыми кислотами (полимераз, обратной транскриптазы, рес стриктаз, факторов инициации и элонгации белкового синтеза и др.). Кроме того, иммобилизованный гепарин связывает липопротеид-липазы и некоторые липопротеиды. Гепарин-агароза выпускается всеми упомянутыми фирмами-поставщиками аффинных сорбентов, кроме Bio-Rad . [c.370]

    Неоспоримое преимущество этого метода по сравнению с классическими методами синтеза пептидов состоит в том, что ни на одной из стадий он не требует выделения растущей полипептидной цепи. В силу чрезвычайно низкой растворимости аддукт пептида и полимера легко отмывается после каждой реакции от побочных продуктов, растворителей и избытка реагентов без потери пептида, после чего аддукт готов к следующей реакции- В настоящее время метод автоматизирован, и запрограммированные аминокислотные синтезаторы без труда могут присоединить шесть аминокислот к растущей полипептидной цепи за 24 ч. Эти приборы добавляют реактивы в падлен<ащей последовательности, меняют условия реакций, обеспечивают необходимое время реакции, отмывают побочные продукты, после чего начинают всю операцию сначала. При помощи метода ТФСП были синтезированы инсулин и фермент рибонуклеаза, состоящий нз 124 аминокислот. [c.406]

    Хим. синтез широко применяют для получения пептидов, в т. ч. биологически активных гормонов и их разнообразных аналогов, используемых для изучения взаимосвязи структуры и биол. функции, а также пептидов, несущих антигенные детерминанты разл. Б. и применяемьк для приготовления соответствующих вакцин. Первые хим. синтезы Б. в 60-е гг. (инсулина овцы и рибонуклеазы 5), осуществленные в р-ре с помощью тех же методов, к-рые используют при синтезе пептидов, были связаны с чрезвычайно большими сложностями. В каждом случае требовалось провести сотни хим. р-ций и окончательный выход Б. был очень низок (менее 0,1%), в результате чего полученные препараты не удалось очистить. Позже были синтезированы нек-рые химически чистые Б., в частности инсулин человека (П. Зибер и др.) и нейротоксин II из ядра среднеазиатской кобры (В. Т. Иванов). Однако до снх пор хим. синтез Б. представляет весьма сложную проблему и имеет скорее теоретич., чем практич. значение. Более перспективны методы генетической инженерии, к-рые позволяют наладить пром. получение практически важных Б, и пептидов. [c.253]

    Потенциальные возможности Т.е. были продемонстрированы синтезом рибонуклеазы А (Р. Меррифилд, 1969) и гормона роста человека (Д. Ямаширо, 1970) длиной 124 и 183 аминокислоты соответственно. Однако в связи с не- [c.505]

    В поджелудочной теленка помимо рибонуклеазы А присутствуют рибо-нуклеазы В, С и D. Эти ферменты относятся к гликопротеннам и имеют различное содержание углеводов. Напрнмер, рибонуклеаза В соединена через остаток аспарагина в положении 34 с пятью остатками маннозы и двумя остатками глюкозы. Для ряда рибонуклеаз, найденных в грибах и бактериях, определена структура, описан синтез рибонуклеазы Г], состоящей из 104 аминокислотных остатков. [c.404]

    Методы белкового синтеза развиты в настоящее время в такой степени, что ферменты, молекулы которых имеют небольшие размеры, могут быть синтезированы в лабораторных условиях. Это дает возможность создавать новые модифицированные ферменты и критически анализировать роль различных групп активного центра. Так, например, установлено, что построенный из 70 аминокислотных остатков синтетический пептид, аналогичный рибонуклеазе 5, но несущий ряд делеций и, совершенно не содержащий дисульфидных связей, все же сохраняет заметную каталитинескую активность [61]. [c.121]

    В период между 1944 н 1954 гг. развивались аналитические исследования по выделению, очистке и определению строения пептидов с высокой биологической активностью, а также методические разработки в области синтеза, например в 1950 г. был разработан метод смешанных ангидридов (Виланд, Буассона, Воган). Эти успехи сделали возможным химический синтез природных пептидов, обладающих биологической активностью. В 1953 г. дю Виньо удалось синтезировать первый пептидный гормон — окситоцин. Эта работа была удостоена Нобелевской премии за 1955 г. В следующие годы наступило бурное развитие синтетической пептидной химии, было предложено несколько новых защитных групп, эффективные методы кои-деисаш1и и иовые методические варианты, такие, как разработаниь й Меррифилдом в 1962 г. пептидный синтез иа полимерных носителях. Химический синтез инсулина и рибонуклеазы ознаменовал переход к белковому синтезу. [c.100]

    Тактика минимальной защиты эффектно продемонстрирована Хирш-маиом при полном синтезе S-белка рибонуклеазы А. Пептидная цепь из 103 аминокислот содержит все трифункциональные аминокислоты, исключая триптофан, в которых были защищены только -амиио- и тиольные группы. Вследствие частичной защиты синтез фрагментов и последующая их конденсация (сборка) могли быть проведены лишь немногими методами (с применеииём НКА и НТА, N-гидроксисукцииимидиых эфиров и азидным методом). Само собой разумеется, что опасность побочных реакций при минимальной защите велика, поэтому фрагменты после их синтеза должны быть очень тщательно очищены. Деблокирование защитных функций обычно протекает без осложнений. [c.221]

    Рибонуклеаза была первым ферментом, который удалось получить полным химическим синтезом. Гутт и Меррифилд синтезировали цепь с С-конца на твердой фазе с использованием автоматического синтезатора (разд. 2.2.7.1). Концепция группы Мерка (разд. 2.2.5.3) состояла в построении фрагментной конденсацией S-белка и соединении его с синтетическим S-пептидом. Невысокая (20 — 30%) величина полученной биологической активности объясняется неоднородностью конечного продукта синтеза. [c.404]

    Свертывание может происходить значительно быстрее, чем синтез цепи. Свертывание in vitro осуществляется чрезвычайно быстро, по крайней мере для малых белков, не содержащих дисульфидных мостиков. Нуклеаза стафилококка повторно свертывается в течение 1 с [438], а метмиоглобин — в течение 10 с [439]. Если эти величины применимы также и к условиям in vivo, свертывание цепи может происходить по крайней мере в 10 раз быстрее, чем биосинтез аминокислотной последовательности. Дисульфидсодержащие белки, например панкреатическая рибонуклеаза, повторно свертываются за время от 1 до 10 с, если дисульфидные связи не были разорваны в процессе предшеств ющей денатурации [440]. Однако если такие белки развернуты и восстановлены, последующее свертывание цепи (которое включает образование правильной системы дн-сульфидных связей) продолжается при оптимальных условиях в течение многих минут. [c.182]

    Рибонуклеозидтрифосфаты и дезоксирибонуклеозидтрифосфаты не являются субстратами фермента. Фермент не нуждается в матрице, однако для синтеза необходима затравочная цепь РНК (НМФ) со свободной З -гидроксильной группой, к которой присоединяются остатки мононуклеотидов. Образовавшаяся полимерная молекула РНК не имеет заданной специфггческой последовательности мононуклеотидов, но содержит 3 —>5 фосфодиэфирные связи, легко разрываемые рибонуклеазой. Относительно биолопгческой роли этого фермента у бактерий предполагают, что он катализирует, скорее всего, обратную реакцию —расщепление мРНК с образованием нуклеозиддифосфатов. [c.495]

    Химия распозгагает мегадами синтеза пептидной связи, т. е. линейной сшивки аминокислот (см. [20]). Эти методы, не имеющие ничего общего со способом синтеза белка в живой клетке (см. ниже гл. 9), обычно применяются для получения полиаминокислот — гомополимеров аминокислот, сходных с белками. Однако если первичная структура белка известна, то осуществим его химический синтез in vitro. Так были синтезированы белковые гормоны кортикотропин и инсулин. Меррифилд автоматизировал метод синтеза и впервые получил настоящий искусственный белок, обладающий ферментативной функцией,— рибонуклеазу [21]. [c.78]


Смотреть страницы где упоминается термин Рибонуклеазы синтезы: [c.451]    [c.347]    [c.687]    [c.508]    [c.277]    [c.167]    [c.83]    [c.106]    [c.146]    [c.215]    [c.408]    [c.51]    [c.157]    [c.493]    [c.302]    [c.27]   
Пептиды Том 2 (1969) -- [ c.2 , c.358 , c.360 ]




ПОИСК





Смотрите так же термины и статьи:

Рибонуклеаза



© 2025 chem21.info Реклама на сайте