Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспортная РНК метаболизм

    Другой важной функцией сывороточных белков является их транспортная функция. Так, сывороточный альбумин связывает и переносит многие слаборастворимые продукты метаболизма. Трансферрин переносит железо, а церулоплазмин (аг-белок, см. дополнение 10-3)—медь. Транскортин — это переносчик стероидных гормонов, в частности кортизола белок, связывающий ретинол, является переносчиком витамина А, а белки, связывающие кобаламин, переносят витамин Bi2. Липопротеиды, подразделяющиеся на три основных класса, переносят фосфолипиды, нейтральные липиды и эфиры холестерина". Главным компонентом этих веществ служит липид. Фракция U1 сыворотки содержит липопротеид с высокой плотностью , фракция, идущая непосредственно перед -бел-ками, содержит липопротеид с очень низкой плотностью, а в -фракции присутствует липопротеид с низкой плотностью. Все эти белки сейчас интенсивно исследуются. Большой интерес к ним обусловлен их связью с сосудистыми заболеваниями, а также с отложением холестерина и других липидов, переносимых белками плазмы, в атеросклеротических бляшках. [c.104]


    В свете современных представлений о метаболизме в растительной клетке местом действия физиологически активных веществ могут быть а) ферменты и ферментные системы б) белки, липиды, нуклеиновые кислоты, участвующие в молекулярной организации структур цитоплазмы и ядра в) информационные и транспортные рибонуклеиновые кислоты г) дезоксирибонуклеиновая кислота. Надо полагать, что эффект, или глубина , воздействия зависит от того, на что и в какой мере влияет то или иное физиологически активное вещество. В одних случаях это действие ограничивается лишь временным изменением интенсивности каких-либо ферментативных реакций, в других — [c.5]

    Регуляция процессов активного транспорта, обеспечивающего поступление подавляющего большинства необходимых прокариотам веществ, происходит на уровне синтеза переносчика и его функционирования. Биосинтез белковых компонентов многих транспортных систем регулируется по типу индукции. Глюкоза, транспортная система которой у большинства прокариот конститутивна, подавляет образование транспортных систем других сахаров и ряда органических кислот путем катаболитной репрессии. Исключение составляют некоторые облигатно аэробные прокариоты, у которых транспорт органических кислот конститутивен, а индуцируемой является транспортная система глюкозы. Избыток субстрата в среде может репрессировать синтез соответствующей транспортной системы. Это особенно характерно для аминокислот. В этом случае регуляция транспорта координирована с регуляцией их последующего метаболизма. Обнаружена также регуляция транспорта по типу отрицательной обратной связи, когда субстрат, [c.124]

    Все известные системы транспорта у прокариот можно разделить на два типа первичные и вторичные. Разобранные выше примеры трансмембранного переноса с участием окислительновосстановительной петли , бактериородопсина или в результате гидролиза АТФ, катализируемого Н —АТФ-синтазой, происходящие за счет химической энергии или электромагнитной энергии света, относятся к первичным транспортным системам (рис. 26, А). В результате их функционирования на мембране генерируется энергия в форме А]1н+, которая, в свою очередь, может служить движущей силой, обеспечивающей с помощью индивидуальных белковых переносчиков поступление в клетку необходимых веществ разной химической природы и удаление из нее конечных продуктов метаболизма. Устройства, с помощью которых осуществляется трансмембранный перенос веществ по градиенту Дрн+ или одной из его составляющих, относятся к вторичным транспортным системам (рис. 26, Б). [c.103]


    Биологические мембраны представляют собой динамическую структуру, компоненты которой подвержены быстрому метаболизму. Благодаря этому липвдное окружение мембранных белков обладает способностью в соответствии с изменением условий функционирования изменять свои физикохимические свойства упаковку, микровязкость, латеральную подвижность компонентов в бислое и т.д. Подавляющее больщинство мембранных белков функционирует в составе олигомерных ансамблей, например в дыхательной цепи митохондрий. Транспортные белки также организуют ассоциаты в бислое димеры (Са -АТФаза), тетрамеры (Ка /К -АТФаза) или даже более высокоорганизованные надмолекулярные комплексы. [c.316]

    Биологическая роль воды не ограничивается растворением биологических структур. Вода в клетках и тканях выполняет также транспортную функцию, участвует в образовании высших структур биологических макромолекул, является донором электронов и протонов в энергетическом обмене. Ютеточный метаболизм зависит от баланса свободной и связанной воды. Нарушение этого соотношения приводит к тяжелым последствиям, вплоть до гибели клетки. [c.11]

    Токсикологическое значение и метаболизм. Токсикологическое значение формальдегида обусловлено довольно широким применением его при изготовлении искусственных смол и пластических масс, при различных синтезах, в красочной и текстильной промышленности, в производстве мыла, для протравливания семян и обработки помещений, тары, инвентаря, транспортных средств, в лабораториях и музеях для сохранения препаратов, в медицине. [c.85]

    Восстановление диоксиацетонфосфата в глицерофосфат происходит также в летательных мышцах насекомых по-видимому, оно представляет путь, альтернативный образованию в этих тканях молочной кислоты. Хотя превращение свободной глюкозы в глицерофосфат и пируват не дает в итоге прироста АТР, следует учесть, что в мышцах исходным материалом служит гликоген, который по сравнению со свободной глюкозой требует для затравочных реакций вдвое меньше АТР. Кроме того, дисмутация триозофосфата, приводящая к образованию глицерофосфата и пирувата, может обеспечить быструю наработку АТР при интенсивных сокращениях мощной летательной мышцы насекомого. Во время более медленной восстанпвительной фазы глицерофосфат, как полагают, снова окисляется, поступая в митохондрии этих в высокой степени аэробных клеток. Таким образом, транспортировка глицерофосфата в митохондрии служит средством доставки в митохондрии восстановительных эквивалентов, полученных от NADH. Возможно поэтому, что значение глицерофосфата для мышечного метаболизма связано в основном с его транспортной функцией, а не с участием в бысТ" ром образовании АТР. [c.349]

    Однако в характере метаболизма, химическом составе и строении различных тканей и различных организмов имеются и бесспорные различия. Что касается метаболизма, то особенности его в соответствующих органах или тканях, несомненно, определяются набором ферментов. Различия в химическом составе органов и тканей тоже зависят от их ферментного состава, в первую очередь от тех ферментов, которые участвуют в процессах биосинтеза. Не исключено, что и более очевидные различия, касающиеся строения и формы тех или иных органов и тканей, также имеют энзимологическую природу. Известно, что строение и форма находятся под контролем генов контроль осуществляется путем образования специфических белков, из которых главными для организации тканей являются ферменты и транспортные системы. Продуктами генов могут быть также белки, не обладающие каталитическими свойствами, но играющие важную роль в встраивании ферментных белков в соответствующие структурные ансамбли, например мембраны однако такие молекулы можно рассматривать как компоненты катализаторов, поскольку они находятся в теснейшей взаимосвязи с ними. [c.96]

    Место локализации системы переноса электронов и механизмов фосфорилирования. Здесь же происходит и синтез липидов. Кроме того,в клеточной мембране локализованы транспортные механизмы, обеспечивающие поглощение питательных веществ и выделение продуктов метаболизма [c.397]

    Мутации, приводящие к нарушению транспортных процессов. В результате таких мутаций антиметаболиты перестают поступать внутрь клетки и потому не могут уже влиять на ее метаболизм. [c.499]

    В данном разделе рассматриваются физические, химические и ферментативные методы, которые используются при исследовании метаболизма бактерий. В последующих главах описаны физические методы и приборы, фракционирование и анализ химических компонентов, выделение и количественное определение ферментов, изучение катализируемых ими реакций, а также исследование проницаемости клеток и транспортных процессов. Все эти вопросы разработаны настолько хорошо, что вполне оправданно опубликование специальных книг, посвященных их методологии и применению. Однако в данном случае авторы ограничились описанием только самых надежных и простых методов, которые могут использовать для достаточно основательного изучения метаболизма бактерий даже начинающие исследователи. [c.166]

    Мембрана клетки призвана осуществлять и транспортную функцию, регулируя потоки питательных веществ внутрь клетки и продуктов метаболизма из клетки. Обычно бактерии имеют большое количество специфических транспортных систем. Транспорт — интегральная часть общей биоэнергетики клетки, которая создает и использует различные ионные градиенты через ЦПМ для переноса веществ и формирования других необходимых клетке градиентов. [c.32]


    Ассгшиляцт фиксированного азота. С-соединения, поступающие в клубеньки, являются источниками не только энергии для азотфиксации, но и углеродных скелетов для ассимиляции фиксированного азота. Образовавшийся в процессе азотфиксации аммоний поступает из бактероидов в цитоплазму растительных клеток клубенька либо в свободной форме, либо в составе аланина (который образуется из-за активности бактериальной аланин-дегидрогеназы). Фиксированный азот и включается в метаболизм растительной клетки. При этом различают стадии первичной ассимиляции азота (вовлечение аммония в клеточный метаболизм), образования транспортных форм фиксированного азота (которые поступают из клубеньков в проводящую систему корня) и транслокации фиксированного азота (его перераспределение между разными органами растения). В первичной ассимиляции и образовании транспортных форм фиксированного азота ключевую роль играют клубенек-специфичные формы ферментов азотного обмена, синтезируемые растением (см. табл. 4.5). [c.182]

    Какова же роль третьей группы РНК, составляюш ей до 10% общего количества РНК клетки и не являющейся ни высокомолекулярной рибосомальной РНК, ни матричной (информационной) РНК. Эта так называемая транспортная РНК сравнительно низкомолекулярна (молекулярный вес порядка 25 ООО). Ее назначение — связывать свободные аминокислоты из раствора и в таком виде, снабженные кодовой меткой т-РНК, нести их в рибосомы. По-видимому, смысл этого заключается, в частности, в защите аминокислот от иных процессов метаболизма, например от окисления и энергетического сгорания, на что организм все же тратит большее или меньшее количество аминокислот — продуктов пищеварения белковой пищи. Главное, однако, — снабжение аминокислоты кодовым ярлыком. Первой реакцией связывания аминокислоты является взаимодействие ее карбоксила с аденозинтрифосфатом с образованием фосфатной связи (для каждой из 20 аминокислот нужен свой специфический фермент)  [c.728]

    Главная масса железа ферритина представлена РеЗ+ и лишь небольшая часть его, расположенная на периферии молекулы — F +. Поскольку основной транспортной формой является восстановленное железо ферритина, переход именно в это состояние определяет возможность его включения в клеточный метаболизм. [c.213]

    Сахара часто перемещаются по флоэме на расстояние нескольких метров со скоростью до 100 ом/ч. Такие расстояния и скорости слишком велики, чтобы считать диффузию главным транспортным механизмом. Для эффективного флоэмного транспорта требуются живые ситовидные трубки, способные к активному метаболизму. Вот почему флоэмный транспорт тормозится при кольцевании стебля, приводящего к гибели всех живых клеток в небольшой зоне вокруг стебля. При этом вода может достигнуть листьев через неповрежденные ксилемные трубки, но сахара не проходят через флоэму окольцованной зоны. Аналогичным образом ингибиторы дыхания могут вос-препятствовать транспорту образовавшихся при фотосинтезе ассимилятов. [c.249]

    Перенос ионов транспортными АТФазами происходит вследствие сопряжения процессов переноса с химическими реакциями, за счет энергии метаболизма клеток. [c.44]

    Изменения состава белков могут происходить либо в метаболических ферментах [69], что блокирует метаболизм вредного вещества, либо в транспортной системе или в клеточной стенке [70], что блокирует их поступление в клетку. Сообщалось о потере в таких условиях специальных транспортных белков мембраны [71]. Кроме того, микроорганизмы могут продуцировать внеклеточные связывающие белки, такие как металло-тионены [72], или пассировать токсины в цитоплазматических вакуолях или гранулах. Неспецифическое внеклеточное связывание токсинов такими компонентами клеточной стенки, как тей-хоевая кислота, полисахариды и липополисахариды, также способствует детоксикации [73]. Известно, что многие из этих адаптаций детерминированы плазмидами, как, например, двойная резистентность некоторых штаммов Staphylo o us aureus к ртути и антибиотикам. [c.55]

    Если процессы продуцирования энергии (фотосинтез, фотосин-тетическое и окислительное фосфорилирование) блокированы, перенос электронов в ФС II или трансформация энергии в дыхательных процессах попадают в тупик , иначе говоря, многие мембранные процессы протекают без синтеза АТФ. При этом одни вещества накапливаются в избытке, другие же оказываются полностью израсходованными из-за нарушений в механизме переноса веществ через мембрану. С активным переносом связано и понятие конкурентного торможения. Проявляется оно в том, что транспорт одного вещества замедляется или прекращается в присутствии другого, сходного по строению биологически активного вещества. Вещества обоих типов вступают в борьбу за молекулы, осуществляющие активный перенос, и возможно, что с одной стороны мембраны на другую будет транспортироваться не необходимое природное, а конкурирующее с ним биологически активное вещество, образующее в процессе метаболизма комплексное соединение с транспортной молекулой. [c.48]

    Триггерные свойства ферментативных систем играют решаюшую роль в ре-гулировании внутриклеточных процессов метаболизма, а также в процессах клеточной дифференциации, когда при делении появляются дочерние клетки, качественно отличные от клеток предшественников. В настоящее время хорошо известны также триггерные свойства ферментативных систем, осуществляющих транспортную функцию. В частности, такие явления были обнаружены при изучении переноса растворов через пористые мембраны. Система мембранного переноса, сопряженная с химической реакцией, в которой участвует транспортируемое соединение, обладает триггерными свойствами. Предположим, что химический процесс катализируется ферментом, свойства которого, в свою очередь, зависят от концентрации субстрата (транспортируемое вещество) или продукта реакции. Такая зависимость может быть основана на изменении конформационного состояния фермента при некоторых критических концентрациях названных соединений. В этих условиях вместе с конформационным состоянием фермента будут меняться его активность и, следовательно, скорость химического процесса. [c.69]

    Хотя рецепторы сигналов хемотаксиса, таких, как рибоза и галактоза, очевидно, являются частью мембранной транспортной системы сахаров, транспорт и метаболизм молекулы возникают не как следствие химического ответа. После связывания с лигандом рецептор, по-видимому, претерпевает конформационное изменение. Оно и регулирует действие жгутиков ферментативным или электрическим способом. Приняв хемотаксис как модель проведения и обработки внешних сигналов, особенно важно, что рецептор рибозы не связывает галактозу, но галактоза все же ингибирует хемотаксический ответ на рибозу (vi a versa). Конкуренция двух углеводов не происходит на уров- [c.356]

    Выход из проблемы находится в биоразнообразии представителей одной функциональной группы. В главе 4 Происхождения видов Ч.Дарвин писал , что биоразнообразие есть путь дт конкуренции, т.е. фактически уход из-под действия естественного отбора. Естественный отбор на самом деле представляет путь к унификации, принадлежности всех к одной партии победителей. Для нормальных условий, например в почве, возможности конкуренции шире, так как приток субстратов велик, и соответственно возможно более широкое разнообразие организмов. Это разнообразие связано с набором используемых субстратов. Многие органотрофные организмы, как псевдомонады, например, способны использовать в качестве единственного источника углерода и энергии сотню органических веществ, лишь бы продукты разложения были совместимы с центральным метаболизмом. Они универсальны по своим пищевым потребностям и оказываются первыми, которые используют необычный субстрат, наиример ксенобиотик. Такого рода потенции дают уникальную пищевую нишу. Организмы этого типа легче всего выделяются в лабораторную культуру. Другие организмы, особенно среди жестко лимитированных по энергии анаэробов, оказываются способными использовать лишь ограниченный набор субстратов. Итак, имеются две стратегии либо использовать возможности организма для потенциально широкого круга субстратов -политрофная стратегия, либо сконцентрировать их на развитии транспортных систем с высоким сродством к узкому кругу субстратов - стратегия монотрофов. [c.48]

    Сходство цитокининов с азотистым основанием аденином, входящим в состав ДНК и РНК, наводит на мысль о том, что эти фитогормоны могут играть очень важную роль в метаболизме нуклеиновых кислот. Оказалось, что некоторые необьга-ные (минорные) основания, выделенные из молекул транспортных РНК, обладают цитокини-новой активностью, следовательно, возможно участие этих оснований в синтезе тРНК. Впрочем, даже такой вариант еще не объясняет механизма их действия как ростовых веществ, и в этой области необходимы дальнейшие исследования. [c.266]

    Все эти процессы, несомненно, сопряжены с интенсификацией метаболизма клетки, хотя в каждом конкретном случае соотношение их, Бероятно, неодинаково и зависит от природы физиологически активного вещества и состояния организма, В некоторой мере это проявляется на втором этапе действия физиологически активных веществ. К началу этого этапа усиливается синтез белка,, в который вовлекаются транспортные РНК и рибосомы. В это время примерно половина тРНК связана с рибосомами (Баев, 1965), а большая часть рибосом стягивается в конгломе- [c.12]

    Обьгано около 90% всех переносимых по флоэме питательных веществ составляет дисахарид глюкоза. Это сравнительно инертный и хорошо растворимый углевод, который не играет почти никакой роли в метаболизме и поэтому служит идеальной транспортной формой, так как маловероятно, чтобы он расходовался в процессе переноса. Основное предназначение сахарозы — вновь превратиться в более активные моносахариды — глюкозу и фруктозу. Высокая растворимость позволяет ей достигать во фло-эмном соке очень высокой концентрации, например у сахарного тростника она составляет до 25% (масса/объем). [c.129]

    Некоторые транспортные процессы, имеющие решающее значение для организма, протекают не только при участии переносчиков, но и с затратами энергии метаболизма, поддерживающими градиенты. Это позволяет транспортировать вещества против градиентов концентрации или электрохимического потенциала. Такие процессы называют активным транспортом (см. 3, гл. V). Основное отличие активного транспорта от облегченной диффузии заключается в том, что одна из стадий активного транспорта является энергозависимой. Когда для переноса вещества используется энергия АТФ или окислительно-восстановительных реакций, транспорт называют первично-активным. Если же в качестве источника энергии используется градиент концентрации ионов, то транспорт называют вторично-активным. В отличие от предыдущего вида транспорта энергозависимая стадия этого процесса представляет собой антипорт или симпорт веществ с ионами. Более подробно системы активного транспорта рассмотрены в гл. XXVI. [c.76]

    Транспорт — это процесс активного перемещения растворенного вещества в клетку или из клетки, который связан с метаболизмом и в котором могут участвовать энергизованные переносчики. У бактерий наиболее изучены два класса транспортных систем — фосфотранс- [c.440]

    На каждом этапе метаболизма белки совершают выбор - остаться в цитозоле или проникнуть в ЭР, остаться в ЭР или поступить в аппарат Г ольджи, стать содержимым транспортных пузырьков, паправляющих- [c.12]

    Участки ЭР, не несущие связанных рибосом, называются гладким ЭР. Как правило, если клетки и содержат настоящий гладкий ЭР, то в очень малых количествах в действительности большинство областей ЭР частично являются гладкими, а частично-гранулярными. Их называют промежуточным ЭР. Именно от этих районов отшиуровываются транспортные пузырьки, переносящие вновь синтезированные белки в аппарат Гольджи (см. рис. 8-9). Однако существуют специализированные клетки, в которых гладкий ЭР хорошо развит и выполняет особые функции. В частности, гладкий эндоплазматический ретикулум преобладает в клетках, специализирующихся на метаболизме липидов. Например, клетки, синтезирующие стероидные гормоны из холестерола, имеют обширный гладкий ЭР, предназначенный для расквартирования ферментов, участвующих в синтезе холестерола и его преобразовании в гормоны (см. рис. 8-37,А). [c.40]

    Во многих случаях при изучении транспорта желательно отделить собственно транспортный процесс от последующего метаболизма, особенно в тех случаях, когда нужно продемонстрировать концентрирующее поглощение. В отношении фосфотрансферазных систем полная диссоциация двух процессов невозможна. Существуют три основных способа отделения транспорта от метаболизма 1) с помощью неметаболизируемых, но транспортируемых аналогов 2) путем использования мутантов с блокированным метаболизмом, но сохраненным [c.463]

    Энергетика транспортных процессов. Концентр и ровашю веществ внутри клеток требует затраты энергии, создании своего рода энергетического привода , который превращает равновесный процесс облегченной диффузии в одновекторпый процесс активного транспорта. Сопряжение транслокации субстрата с энергией метаболизма может осуществляться двумя основными путями. [c.56]

    А. Эстрогены. В печени эстрадиол и эстрон в результате реакций, показанных на рис. 50.6, превращаются в эстриол. Эстрадиол, эстрон и эстриол служат субстратами печеночных ферментов, присоединяющих глюкуронидную или сульфатную группу. Активность этих конъюгирующих ферментов у разных видов различна. У грызунов активность ферментных систем метаболизма (особенно гидрокси-лирующих) столь высока, что эстрогены почти полностью разрушаются в печени и при пероральном введении практически не оказывают никакого действия. У приматов ферменты данной группы менее активны и, следовательно, пероральное введение эстрогенов у них более эффективно. Конъюгированные стероиды водорастворимы и не способны связываться с транспортными белками. Поэтому они легко выделяются с желчью, калом и в меньшей степени с мочой. [c.237]

    Метаболизм большинства водорастворимых витаминов имеет общие черты. Они всасываются в кишечнике, запасаются в связанном с ферментами или транспортными белками виде и выделяются с мочой, когда их уровень в плазме превышает почечный порог. Единственным важным исключением является витамин В,2, для всасывания которого в дистальном отрезке подвздошной кишки требуется внутренний фактор (синтезируемый париетальными клетками желудка) этот витамин хранится в печени в миллиграммовых количествах, выделяется с желчью (и реабсорбируется через энтерогепатическую циркуляцию) и с мочой. [c.280]

    Мембранные белки участвуют во всех процессах метаболизма и выполняют защитные функции. Кроме того, определенные белки устанавливают специфические контакты с внешним окружением — со средой и соседними клетками. Эти белки Сингер назвал информационными, так как они формируют и передают сигналы об окружении внутрь клетки (Singer, 1992), Такое подразделение является условным, так как все процессы на поверхности клетки (ферментные, контактные, транспортные, электрохимические) взаимосвязаны и информация о них поступает внутрь клетки. [c.118]

    Регуляция транспортных процессов. Регуляция нроцессов транспорта, как и регуляция процессов внутриклеточного метаболизма, осуп1,еетвляется на двух уровнях иа уровне биосинтеза белкоылх посредников (переносчиков) и на уровне функционирования 1 отоШ)1х посредников. [c.60]

    Красноречивым свидетельством важности последствий регуляторных событий, разыгрывающихся на уровне транспортных нроцессов, для клеточного метаболизма в целом является недавно расшифроващ1ЫЙ механизм катаболитной репрессии, точнее та его сторона, которая пеносредствепно связана с управлением внутриклеточным уровнем циклического АМФ. Оказалось, что регуляция уровня цАМФ у Е. oli облигатно зависит от целостности и функционирования фосфотрансферазной системы транспорта глюкозы. [c.63]


Смотреть страницы где упоминается термин Транспортная РНК метаболизм: [c.514]    [c.336]    [c.299]    [c.173]    [c.299]    [c.220]    [c.242]    [c.152]    [c.63]    [c.152]    [c.56]   
Биохимия Том 3 (1980) -- [ c.223 ]




ПОИСК





Смотрите так же термины и статьи:

Метаболизм

Транспортная РНК



© 2025 chem21.info Реклама на сайте