Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммиак взрывчатые свойства

    Соединения азота с точки зрения техники безопасности работы в химических лабораториях заслуживают особого внимания. Многие как неорганические, так и органические соединения его являются высокотоксичными, многие идут на получение взрывчатых веществ. Сам азот не обладает ни ядовитыми, ни раздражающими свойствами, он пассивен в процессе горения. Но при вдыхании больших концентраций его у человека появляются патологические явления, связанные с недостатком кислорода (кессонная болезнь). В то же время в различных формах своих соединений азот участвует в жизненно важных физиологических процессах. Наруше-, ния нормального течения азотного обмена в организме часто являются причиной тяжелых заболеваний. В лабораториях находят широкое применение следующие соединения азота азотная и азотистая кислоты, аммиак, хлористый нитрозил и др. [c.190]


    До конца 20-х годов в химической термодинамике наибольшее внимание исследователи уделяли изучению фазовых переходов и свойств растворов, а в отношении же химических реакций ограничивались преимущественно определениями их тепловых эффектов. В известной степени это объясняется тем, что именно указанные направления химической термодинамики стали первыми удовлетворять потребности производства. Практическое же использование методов термодинамики химических реакций для решения крупных промышленных проблем долгое время отставало от ее возможностей. Правда, еще в 70—80-х годах методы химической термодинамики были успешно применены для исследования доменного процесса. К 1914 году на основе термодинамического исследования Габер определил условия, необходимые для осуществления синтеза аммиака из азота и водорода, что привело в конечном результате к возможности промышленного получения в больших количествах аммиака, азотной кислоты, азотных удобрений, взрывчатых веществ и порохов из дешевых и широко доступных исходных материалов. В 20-х годах, лишь после того, как термодинамическое исследование реакции синтеза метанола из Н2 и СО дало возможность определить условия, при которых положение равновесия благоприятно для этого, синтеза, наконец была решена проблема создания производства метанола из дешевого сырья. Полученные результаты показали также, что проводившиеся ранее поиски более активных катализаторов не были успешными не из-за их малой активности, а вследствие недостаточно благоприятного положения равновесия в условиях, в которых пытались осуществить эту реакцию. Известны и другие примеры успешного применения методов термодинамики химических реакций для решения промышленных задач. Однако только с конца 20-х годов плодотворность применения этих методов исследования начинает получать все более широкое признание. [c.19]

    Прн взаимодействии ацетилена с водными растворами солей меди, серебра и ртути образуются осадки соответствующих ацети-ленидов металлов, характеризующиеся взрывчатыми свойствами. Ацетилен, содержащий влагу и аммиак, при длительном контакте с красной медью может реагировать с ней с образованием ацети-ленидов меди. При соприкосновении с серебром ацетилен способен образовывать взрывчатое ацетиленистое серебро. Содержание меди в материале аппаратуры, запорной арматуры, приборов и других устройств, применяемы-х в производстве ацетилена, не должно превышать 70%. [c.23]


    Синильная кислота получается в химической промышленности различными способами. Одним нз них является пропускание смеси аммиака, окиси углерода и водяного пара над древесным или костным углем или над пед1зой при температуре 80—150°, Синильная кислота является сильным ядом для насекомых и теплокровных в концентрации 0,2—0,3 г на 1 л вызывает моментальную смерть человека. Синильная кислота мон ет быть стабильной только в чистом состоянии под влиянием примесей влаги, цианистых солей, аммиака и других веществ — она изменяется. Например, при хранении, особенно на свету, образуется аммиак, муравьиная и щавелевая кислоты и нерастворимые вещества. При разложении и полимеризации синильной кислоты может произойти взрыв. При этом выделяются газы, главным образом NHg и СО. После взрыва образуется твердый продукт в виде углеобразной массы, представляющий собой полимер синильной кислоты. Синильной кислоте могут придать стабильность серная (0,005—0,01 %-ная) и соляная кислоты, медь и другие вещества. Для стабилизации применяется также хлорциан (8—15%-ный) и другие специальные составы, при добавлении которых устраняется свойство взрывчатости. Для хранения синильной кислоты требуются специальные стальные или алюминиевые баллоны. Стабильность ее гарантирована в продолжение 3—4 месяцев. При хранении на складах необходимы специальные условия, ее не перевозят по железным дорогам. [c.182]

    Нитрат аммония при взаимодействии с оксидами металлов выделяет аммиак, воду и нитрат металла. Примеси увеличивают скорость распада при нагревании нитрата аммония в несколько раз, я примеси хлоридов придают ему взрывчатые свойства. Примеси масла [около 1.8% (масс.)] увеличиваю скорость горения и переводят его во взрыв. [c.322]

    Раствор иода в метиловом или этиловом спирте вливают в воду, выпавший мелкий порошок иода отфильтровывают и промьшают водой. Иод с фильтра переносят в небольшую колбочку или в стакан и приливают к нему охлажденный концентрированный раствор аммиака. Суспензию взбалтывают и после отстаивания раствор аммиака сливают, а осадок снова обрабатывают свежей порцией раствора аммиака. Полученный иодистый азот (Ы1з ЫНз) отфильтровывают через бумажный фильтр, промывают влажным эфиром и, развернув фильтр, распределяют небольшими порциями влажный иодистый азот на кусочки фильтровальной бумаги. После того как иодистый азот высохнет, до него и до фильтра касаться нельзя, так как он обладает сильными взрывчатыми свойствами. Иногда он взрывается самопроизвольно. [c.243]

    Комплексные соединения аммиака и гидразинов с хлоратами и перхлоратами ряда двухвалентных тяжелых металлов были исследованы Фридериком и Фарвурстом как возможные компоненты инициирующих ВВ, используемых в детонаторах. Установлено, что эти соединения обладают взрывчатыми свойствами, промежуточными между сво1ктвами средств инициирования, например гремучей ртути, и вторичных ВВ, например тетрила (трн-нитрофенилметилнитроамин). Аналогичные соединения хлоратов расплываются на воздухе и быстро гидролизуются они более чувствительны к удару, чем соответствующие соединения перхлоратов. [c.138]

    При нагревании аммиачная селитра теряет аммиак. При температуре выше 200° разложение селитры ускоряется, выделяется кислород, и она становится взрывчатой и огнеопасной. Разложение ускоряется в присутствии некоторых веществ (графита, стекла и др.). Взрывчатые свойства аммиачной селитры проявляются при неблагоприятных условиях ее хранения. Следует также иметь в виду, что при хранении аммиачной селитры могут происходить превращения одной кристаллической формы в другую (перекристаллизация) это также способствует слеживаемости. При переходе в новую кристаллическую форму значительно увеличивается [c.126]

    Фосфин РНз изучен наиболее подробно. Молекулы фосфина представляют собой пирамиды с углом Н—Р—Н, равным 93,7 . Фосфин в чистом виде самопроизвольно не воспла.меняется, но часто загорается в присутствии следов Р.2Н4 или Р4. Фосфин легко окисляется воздухом и может образовывать взрывчатые смеси. Фосфин крайне ядовитое вещество. Эти свойства являются причиной его практической непригодности. В отличие от аммиака он не ассоциирован в жидком состоянии и только умеренно растворим в воде. Измерения pH водных растворов фосфина показывают, что растворы не проявляют ни основного, ни кислотного характера константа диссоциации кислоты и константа диссоциации основания [c.346]

    В производстве азотной кислоты употребляются аммиак, окислы азота, серная кислота, кислород и другие вещества как в чистом виде, так и в виде различных смесей. Многие из этих веществ обладают токсическими свойствами либо являются огнеопасными (как, например, азотная кислота при соприкосновении с древесиной, соломой и другими органическими веществами), либо образуют взрывчатые смеси (как, например, смесь аммиака с воздухом или кислородом, смесь жидких окислов азота с жидким аммиаком или органическими ненасыщенными соединениями). [c.480]


    После обсуждения физических и химических свойств водорода целесообразно рассмотреть и суммировать некоторые важные области его ири-менения. В промышленности большие количества водорода используются для производства аммиака при непосредственном взаимодействии водорода и азота. Аммиак находит широкое применение в производстве удобрений и взрывчатых веществ, используется как хладоагент, а также самым разнообразным образом применяется в различных отраслях химической промышленности. В силу этого для производства аммиака используется больше водорода, чем для какого-либо другого процесса. [c.99]

    В промышленности находят применение смеси ацетилена с аммиаком. Исследования взрывчатых свойств газовых смесей ЫНз и С2Н2 с воздухом показали , что для полного сгорания эти смеси должны содержать не менее 15 объемн. % ацетилена. Растворы ацетилена в жидком аммиаке взрывоопасны только при содержании в жидкости более 30 вес.% С2Н2 и температурах ниже 50 С. Давление при взрыве таких смесей в 5—6 раз больше начального. Опыты проводились прн поджигании смесей накаленной вольфрамовой нитью. [c.41]

    Оксид серебра способен к образованию комплекса с аммиаком IAg(NH3)2] . Нужно иметь в виду, что при продолжительном стоянии [Ag(NH3)2l образуется черный осадок AggN — гремучего серебра, вещества с очень сильными взрывчатыми свойствами. [c.406]

    В противоположность взрывчатым галоидным соединениям азота, являю-теимся продуктами замещения на галоид водорода аммиака, галоидамины совершенно не обладают взрывчатыми свойствами. С водой они могут реагировать с образованием аминов и бромноватистой (или хлорноватистой) кислоты  [c.281]

    Чистый нитрат аммония не чувствителен к ударам или трению, но при определенных условиях обладает взрывчатыми свойствами. Вследствие этого его используют и как сырье для производства аммонийно-селитренных взрывчатых веществ — аммонитов (смесей NH4NO3 с древесной мукой и другими органическими материалами с добавкой нитропродуктов), аммоналов (смесей, содержащих алюминиевый порошок) и др. Они взрываются только от детонатора. Взрывы чистой аммонийной силитры могут быть вызваны термическим разложением соли в замкнутом пространстве. При этом газообразные продукты разложения (NO2) служат катализаторами дальнейшего разложения, приводящего к взрыву. Взрывоопасность NH4NO3 возрастает в присутствии минеральных кислот и легко окисляющихся примесей (смазочных масел и др.) и уменьшается при увеличении влажности соли. Для предотвращения самопроизвольного разложения к ней добавляют стабилизаторы — вещества, связывающие образующуюся при разложении азотную кислоту и NO2 или выделяющие при взаимодействии с NH4NO3 аммиак, который нейтрализует азотную кислоту и восстанавливает оксиды азота до элементарного азота. Стабилизаторами являются карбамид (0,05—0,1 % от массы селитры), карбонаты кальция и магния и др. [c.223]

    Азотная кислота HNO3— бесцветная жидкость с резким запахом, гигроскопична, кипит при 84 °С, хорошо растворима в воде. Разбавленная А. к. проявляет все свойства одноосновных кислот. Концентрированная (96—98 %) HNO3 красно-бурого цвета от присутствия в ней NOa-Ha свету и при нагревании HNO, разлагается на N0-2, О2 и HjO. Концентрированная А. к.— один из самых сильных окислителей, реагирует почти со всеми металлами (за исключением золота, платины, иридия, родия) с образованием нитратов, при этом выделяются оксиды азота. Алюминий, железо и хром легко взаимодействуют с разбавленной А. к., но практически не реагируют с концентрированной кислотой вследствие образования на поверхности защитного тонкого слоя оксида металла. А. к. взаимодействуют со многими неметаллами, а также оргащтческими соединениями. В промышленности А. к. получают из аммиака. А. к. применяется в производстве азотных удобрений, взрывчатых веществ, лекарств, красителей, пластических масс, искусственных волокон, как окислитель в реактивных двигателях и др. [c.8]

    Некоторые экспериментаторы при отжиге охлаждали обтюраторы в метаноле или других органических веществах, чем достигалось восстановление окисленной поверхности меди, однако, в обычной практике это не вызывается необходимостью. С течением времени металл теряет приоберетенную при отжиге пластичность, поэтому долго хранящиеся медные обтюраторы требуют повторного отжига. Там, где рабочая среда разрушает обтюратор, а также там, где материал обтюратора загрязняет продукт или образует взрывчатые соединения (ацетиленистая медь), медь заменяется другим металлом, так, например, в присутствии аммиака применяют алюминий. В условиях более высоких давлений ставят иногда лат нь, отожженное железо и т. п., как обладающие более высокими механическими свойствами. Неметаллические обтюраторы делают из вулканизированной фибры, картона, бумаги, паронита, асбеста, текстолита, кожи, резины и различных пластикатов. При этом надо учитывать, что резина из натурального каучука может применяться при температуре около 100°, кожа растительного дубления до 40°, хромовая до 70°, фибра примерно до 160°, промасленный картон и бумага до 200°. Текстолит, резина на синтетическом каучуке и пластикаты применяются при более низких температурах при высоких температурах стоек асбест, но начиная с 480° он довольно быстро теряет кристаллизационную воду и разрушается. Для жидкостей асбест вообще непригоден. Для этих целей лучше применять паронит или другие композиции асбеста с каучуком. В этих случаях иногда применяют комбинированные прокладки из асбеста с Металлической оболочкой. [c.182]

    Свойства. Ьесцветная жидкость с характерным запахом. Температура плавления —83 С, температура кипения 77,3 С. Плотность 0,806 г/см , показатель преломления 1,3911. Растворим в воде. Образует азеотропную смесь, содержащую Ь7,5% акрилонитрила, кипящую при 70,5- 70,7 °С. Смешивается с большинством органических растворителей. Весьма реакционноспреобен. В чистом виде нестоек, быстро полимеризуется (иногда со взрывом), если хранится без ингибитора (гидрохинон, хинон, аммиак, ароматические нитросоединения). Горюч. 1емпература вспышки 0°С, смеси с воздухом от 3,05 до 17,0% (o6.)i взрывчаты. [c.18]

    В 1890 г. Курциус в Германии получил это вещество, состава НЫ , в виде легко летучей (при- -37°), вводе растворимой и очень легко взрывчатой жидкости, обладающей свойствами ясной кислоты, растворяющей цинк, алюминий и другие металлы с выделением водорода, дающей, подобно соляной кислоте, соли, напр., натровую ЫаЫ , аммиачную Ы№Ы = Ы Н бариевую Ва(Ы ) и т. п., а потому названной азотнстоводородною кислотою НЫ [193]. Неожиданность этого открытия, необычайность состава (в аммиаке ЫН содержится один Ы и три Н, в НЫ — наоборот, три N и один Н), легкая разлагаемость с сильным взрывом большинства солей азотистоводородной кислоты и особенно ясно кислотный характер НЫ (водный раствор показывает ясную кислотную реакцию, напр., на лакмус) — не только показали важность открытия, сделанного Курциусом, но и заставили сперва недоумевать в отношении природы вновь полученного вещества, потому что на первый взгляд вовсе не видно тех отношений, в которых НЫ стоит к другим, давно и столь хорошо известным простейшим соединениям азота, дух же науки, между прочим, требует во всем [c.189]

    Низкокипящим ншдким окислителем может служить также трехфтористый азот NF8. По своим свойствам он резко отличается от взрывчатого хлористого азота и от окиси фтора, термически устойчив и умеренно активен, не обладает корродирующим действием. Для конденсации его в жидкость и для хранения требуется низкая температура. Т. кип. НГз минус 128,87° т. пл. минус 206,65°, плотность 1,54 г/сл при — 128°. Известны окислительные реакции, позволяющие использовать трехфтористый азот для получения высокотемпературного пламени. Раскаленный древесный уголь горит в трехфтористом азоте более энергично, чем в кислороде. Восстановители, такие как аммиак и водород, будучи подожжены, горят в трехфтористом азоте с выделением большого количества тепла. Расчетные данные об удельном импульсе трехфтористого азота показывают, что он является хорошим окислителем, но не имеет преимущества перед жидким кислородом. [c.39]

    Общие свойства алкиламинов. Свойства аминов зависят как от числа атомов углерода в радикале, так и от структуры молекулы. С увеличением молекулярного веса амина ослабевает типичный, напоминающий аммиак запах и уменьщается его растворимость в воде. Низкомолекулярные соединения (различные метиламины и этиламин) при нормальных условиях представляют собой газы, а амины со средним молекулярным весом (пропиламин или диэтиламин) являются жидкостями. Температуры вспышки низших и средних аминов сравнительно низки. Пары аминов образуют с воздухом взрывчатые смеси. Амины сравнительно чувствительны к действию окислителей. [c.315]

    За рубежом синтетический аммиак первоначально перерабатывали в малоконцентрированные удобрения — сульфат аммония и известково-аммиачную селитру, содержащие 21% азота, однако аммиачную селитру не применяли в сельском хозяйстве из-за ее взрывоопасности (известен взрыв в Оннау в 1921 г., когда нри разрыхлении с помощью взрывчатых веществ слежавшейся двойной соли сульфата—нитрата аммония произошла детонация с катастрофическими последствиями). Еще в 1903 г. академик Д. Н. Прянишников, внесший большой вклад в изучение азотного питания растений, называл аммиачную селитру удобрением будущего . В конце 20-х годов, когда в СССР только закладывался фундамент азотной промышленности и необходимо было установить ассортимент азотных удобрений, особое внимание было обращено на перспективность использования в сельском хозяйстве аммиачной селитры, единица азота в которой оказывалась наиболее дешевой. В результате глубокого изучения свойств, в том числе взрывоопасности, аммиачной селитры и особенно благодаря полевым опытам в различных зонах в основу отечественной азотной промышленности с самого начала ее развития была положена переработка аммиака в аммиачную селитру. [c.105]

    III. Бесцветный газ с характерным запахом. Молекула имеет строение незавершенного тетраэдра [ Ы(Н)з] (хр -гибридизация). Сжижается под избыточным давлением при комнатной температуре. В жидком состоянии ассоциирован за счет водородных связей, в малой степени подвергается автоионизированию (автопротолизу). Термически неустойчив. Хорошо растворим в воде, доля в насыщенном растворе равна 34% по массе и 99% по объему, pH = 11,8. Образует гидрат, проявляющий свойства слабого основания. Весьма реакционноспособный, склонен к реакциям присоединения. Сгорает в кислороде, реагирует с кислотами. Проявляет восстановительные (за счет N ") и окислительные (за счет Н ) свойства. Осушается только оксидом кальция. Качественные реакции — образование белого дыма при контакте с газообразным НС1, почернение бумажки, смоченной раствором Hg2(N03)2. Промежуточный продукт при синтезе HNO3 и солей аммония. Применяется в производстве соды, азотных удобрений, красителей, взрывчатых веществ, жидкий аммиак — хладагент. Промышленностью выпускается концентрированный раствор аммиака — аммиачная вода (массовая доля аммиака 25—28%). Ядовит. [c.168]

    Изучение таблицы показывает, почему для промышленного охлаждения почти исключительно применяется аммиак. Он имеет хороший практический к. п. д. и требует самой незначительной производительности компрессора (за исключением углекислоты, которая обычно вы-ладает из промышленного применения вследствие высоких давлений и низкого практического к. п. д.). Следует отметить, что фреон-12 (ди-ллордифторметан), который получает все большее распространение, ло своим термодинамическим свойствам подобен аммиаку и имеет преимущество, заключающееся в большей безопасности применения, поскольку он является нераздражающим, неядовитым и невзрывоопасным. Пропан также очень напоминает аммиак, но образует с воздухом взрывчатые смеси. [c.500]

    Аммиачная селитра НН4НОз — безбалластное удобрение, содержащее 35% азота в аммиачной и нитратной формах. Аммиачная селитра может быть использована как удобрение для любых культур и любых почв. Однако это удобрение имеет плохие физические свойства кристаллы ЫН4ЫОз сильно гигроскопичны и потому, расплываясь на воздухе, слеживаются затем при хранении в крупные агломераты, которые очень трудно вносить в почву. Для уменьшения слеживаемости селитры ее гранулируют с некоторыми негигроскопичными добавками (нитраты кальция и магния, фосфаты кальция) полученные гранулы припудривают тонкомолотым гипсом, каолином, фосфоритной или костяной мукой, кроме того, нитрат аммония огне- и взрывоопасен, что также осложняет применение его в качестве удобрения. Нитрат аммония — одно из основных составляющих многих взрывчатых веществ. Как правило, нитрат аммония выпускают заводы, производящие аммиак и азотную кислоту. [c.275]

    Обычно реакция солей диазония с аммиаком приводит к глубоким превращениям. Первую попытку получить монозамещенные триазены при помощи этой реакции сделал П. Грисс [2] в 1866 г. Он нашел, что при взаимодействии нитрата фенилдиазония с аммиаком в водном растворе главным продуктом реакции является диазоаминобензол. Кроме того, в некотором количестве выделен анилин и сильно взрывчатое, обладающее кислотными свойствами, желтое [c.10]


Смотреть страницы где упоминается термин Аммиак взрывчатые свойства: [c.465]    [c.103]    [c.87]    [c.24]    [c.17]    [c.412]    [c.320]    [c.220]    [c.92]   
Технология азотной кислоты (1962) -- [ c.60 , c.370 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак свойства

Взрывчатость



© 2025 chem21.info Реклама на сайте