Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород хроматографический анализ

    Хроматографический анализ состава газа до и после очистки (табл. 4.3) показал, что относительный состав углеводородов практически не меняется, а весь избыточный кислород присутствовал в очищенном газе, т.е. окисления углеводородов не происходило. [c.104]

    Хроматографический анализ газов регенерационной смеси показал, что в процессе выгорания углеродистых отложений выделяется только СОг- На рис. 2.26 представлено изменение концентраций Oj в реакционной смеси и изменение массы образца в процессе регенерации при 400 °С и содержании кислорода в аргонокислородной смеси 0,5% (об.). [c.45]


    Проведение анализа. Перед началом анализа прибор проверяют на герметичность. Создают вакуум при помош и напорной склянки одной из измерительных бюреток. После устранения обнаруженных неплотностей систему и колонку продувают углекислым газом со скоростью 40 мл мин. Для анализа в бюретку 5 забирают 100 мл газа и определяют в нем суммарное содержание двуокиси углерода н сероводорода по поглощению в 33%-ном растворе КОН. Содержание кислорода определяют по поглощению в растворе пирогаллола. Остаток газа после абсорбционного анализа остается в бюретке -5 для дальнейшего хроматографического анализа. Часть этого газа расходуют на промывку системы. [c.852]

    При хроматографическом анализе воздушных проб на колонках, заполненных молекулярными ситами-цеолитами типа NaX или СаА, содержащиеся в воздухе азот и кислород хорошо разделяются и при пользовании детектором (катарометром) регистрируются иа диаграммной лейте в виде отдельных пиков. Четкость разделения обусловливает весьма высокую точность результатов количественного анализа. [c.184]

    Пример. При хроматографическом анализе воздушных проб на колонках, заполненных молекулярными ситами-цеолитами типа ЫаХ и СаХ, содержащиеся в воздухе N2 или Оа хорошо разделяются и регистрируются детектором на диаграммной ленте в виде отдельных пиков (рис. 9.14). Четкость разделения кислорода и азота обусловливает весьма высокую точность результатов количественного анализа. Из-за близкой поляризуемости молекул кислорода и аргона эти газы в указанных условиях не разделяются (на хроматограмме один пик), а все другие компоненты из-за концентрации не регистрируются. [c.238]

    Окислы азота [99, 132] (за исключением закиси азота) разделяют хроматографией на силикагеле, однако двуокись азота не удается отделить от кислорода и азота. Наоборот, закись азота можно отделить от этих газов как на активированном угле, так и на силикагеле. Закись азота понемногу растворяется в растворах едкого кали, тогда как окись азота совсем не растворяется в них. Хроматографический анализ окислов азота может служить быстрым методом контроля чистоты веселящего газа и других газообразных смесей, содержащих закись азота. [c.514]

    Известные затруднения при хроматографическом анализе конвертированного газа обычно связаны с тем, что в его состав входит трудноразделяемая пара азот — кислород, для разделения ее приходится применять очень длинные хроматографические колонки, и очень адсорбирующаяся двуокись углерода, время элюирования которой слишком велико. Продолжительность анализа такой смеси можно сократить, применив предложенный нами метод переноса компонента , сущность которого состоит в том, что непосредственно после отделения двуокиси углерода соответствующий участок колонки вместе с отделенным компонентом переносится в разъем между остальным участком колонки и детектором. При этом достигается не только сокращение продолжительности анализа, но и повышается его точность. [c.130]


    Сожжение в токе кислорода применяют как в каталитическом, так и в некаталитическом варианте [424, 681, 802, 904]. Этот метод требует более сложной аппаратуры, но его целесообразно использовать в тех случаях, когда газы сожжения непосредственно поступают на хроматографический анализ [681]. [c.196]

    Вследствие того, что нанесенная таким образом пленка близка к монослой ному покрытию, скорости массопередачи велики и использование таких сорбентов позволяет проводить высокоскоростной хроматографический анализ. Термическая стабильность этих сорбентов на 80—90 °С превышает термостабильность самих неподвижных фаз. Во избежание окисления следует очищать газ-носитель от следов кислорода. Механизм разделения на сорбентах с привитыми фазами Достаточно сложен и определяется преимущественно процессами адсорбции. [c.112]

    Поскольку молекулярные сита типа 13х обеспечивают полное и быстрое разделение на компоненты смеси газов, состоящей из водорода, кислорода, азота, окиси углерода и метана, представляло интерес выявить возможность использования их в качестве сорбента в разрабатываемых нами методах хроматографического анализа газов. [c.193]

    Суммарное содержание активного кислорода в реакционной смеси, определяемое иодометрически не изменялось в течение исследуемого времени реакции тонкослойная хроматография конечного продукта не выявила других перекисных соединений, кроме исходной гидронерекиси и перэфира. Хроматографический анализ проводился в тонком слое силикагеля КСК, закрепленного гипсом растворитель толуол метанол (20 3) для проявления использовали раствор N, N-диметил-п-фенилендиамина в метаноле. [c.301]

    Определение кислорода можно осуществить либо путем гидрирования до воды, либо путем взаимодействия с углем с получением окиси или двуокиси углерода (последней — после дополнительного окисления) [74]. В литературе [74] дан детальный обзор опубликованных методик элементного хроматографического анализа, причем наряду с методами определения указанных выше элементов рассматриваются возможности определения галогенов (окисление образца с получением свободных галогенов восстановление до НС1, HBr, HI), мышьяка и фосфора (восстановление до арсина и фосфина). В качестве подходящего адсорбента рекомендуются порапаки Р и Q, которые пригодны для разделения воды, двуокиси серы, метана и др. Даны также сравнительные характеристики восьми стандартных хроматографических анализаторов элементного состава, которые используют, как правило, для определения углерода, водорода и азота. Объем пробы составляет 0,2—3 мл, продолжительность анализа от 8 до 20 мин, погрешность определения (стандартное отклонение) составляет соответственно для углерода 0,18—0,30 абс. %, для водорода 0,08—0,20%, для азота 0,13—0,40%. Детекторами во всех случаях служат катарометры. [c.202]

    Изучалось также поведение железных и алюминиевых образцов в дистиллированной воде при комнатной температуре. Хроматографический анализ атмосферы после кратковременных испытаний (5 и 24 час) показал только незначительную убыль кислорода, появления водорода не наблюдалось. Однако после более длительного испытания оказалось, что и алюминий, и железо даже при 25° С корродируют в воде с определенной долей водородной деполяризации. В табл. 4 приводятся данные для образцов пробывших в воде 7 суток. Количество выделившегося водорода невелико, но оно регистрируется совершенно отчетливо. Интересно, что у алюминия при 25° С доля водородной деполяризации довольно значительна. Это, вероятно, связано с тем, что утолщение естест- [c.149]

    Хроматографический анализ следов окиси углерода в газовых смесях, содержащих в качестве основного компонента кислород, азот, гелий и другие низкокипящие газы, можно осуществить с помощью пламенно-ионизационного детектора, включая стадию гидрирования окиси углерода до метана [1]. Для повышения чувствительности метода представляет интерес исследовать возможность предварительного обогащения анализируемой смеси на слое адсорбента. [c.29]

    В. Комбинпронанный метод хроматографического анализа углеводородпы газов, содержащих водород, о кись углерода, кислород и азот. ... [c.888]

    Для выбора методики полного хроматографического анализа газа необходимы данные предварительного анализа. Предположим, что при предварительном анализе какого-либо газа установлено, чтс он состоит из водорода, кислорода, азота, окиси углеводора, пре дельных и ненасыщенных углеводородов. Если пропускать это-газ через хроматограф с колонкой, заполненной адсорбентом, мо дифицированным вазелиновым маслом, с применением в качестве газа-носителя водорода", то хроматограмма будет иметь следую щии вид (рис. 31). [c.52]

    Реакционный таз (СО2) импульсом с помощью крана-дозатора 3 с объемом петли I мл подавался в поток газа-носитедя, проходил колонку длиной 0,2 м, заполненную предварительно восстановленным никельхромовым катализатором, и после очистки в ней от сле- дов кислорода поступал в микрореактор 5 с навеской (I г) исследуемого кокса (размер частиц О,2-0,3 мм). Колебания температуры в реакторе не превышали 0,5°С. Продукты реакции (СО, СО2) после иикрореактора разделялись при температуре ЮО°С на хроматографической колонке б длиной 0,6 ы, заполненной активированным углем марки КД. Выходные кривые хроматографического анализа реакционной смеси записывались на самопишущем потенциометре хроматографа. [c.29]


    Химия поверхности силикагеля для ВЭЖХ независимо от способа его получения примерно одна и та же. Поверхностный слой силикагеля, который в дальнейшем работает как адсорбент или же служит той матрицей, к которой прививают химически неподвижную фазу, можно представить себе следующим образом (рис. 4.1). На поверхности силикагеля, таким образом, можно обнаружить несколько видов групп, способных к взаимодействию с веществами в процессе последующего хроматографического анализа или в процессе прививки неподвижной фазы. Прежде всего, это может быть силанольная группа со свободным гидроксилом (тип I). Во-вторых, это может быть силанольная группа, свободный гидроксил которой образует с соседним атомом кислорода за счет его неподеленной пары электронов водородную связь (тип II), при этом образуется устойчивый шестичленный цикл. В-третьих, это может быть силоксановый мостик, который образуется за счет отщепления молекулы воды от двух силанольных групп (тип III). Последний тип связи может за счет обратимой реакции гидролиза превратиться в две силанольные группы (тип I). [c.89]

    При хроматографическом анализе продуктов олефиновый индикатор адсорбируется в зоне олефиновых углеводородов и в ультрафиолетовом свете дает яркожелтое свечение. Однако этот индикатор очень быстро теряет свою активность. Для предотвра-П1ения окисления индикатора в ходе его получения добавляли ионо л и гидрохинон. Следует отметить, что в результате окисления индикатор теряет способность равномерно распределяться по зоне адсорбции олефинов. Это можно объяснить тем, что полициклическая ароматика с гетероатомами кислорода обладает большей адсорбируемостью на силикагеле, нежели олефины. Характеристика индикаторов приводится в табл. 1 и 2  [c.312]

    Довольно высокие требования предъявляются к герметичности пневматической схемы газового хроматографа. Негерметичность газовых трактов оказывает влияние на стабильность нулевой линии (шумы и дрейф), на погрешность и воспроизводимость хроматографического анализа. Негерметичность линии газа-носи-теля после испарителя может привести к потерям пробы, а негерметичность линий вспомогательных газов к нестабильной работе детекторов. Кроме того, при негерметич ности линий газа-носителя может происходить диффузия в колонку и детектор атмосферного кислорода, который способствует разложению пробы и неподвижной фазы, увеличивает фоновый ток и уменьшает чувствительность некоторых типов детекторов, разрушает чувствительные элементы детекторов по теплопроводности. [c.127]

    Известен способ доокисления циклододеканона кислородом воздуха в присутствии ацетата марганца в среде уксусной кислоты. В этом случае хроматографическим анализом в продуктах окисления обнаружено 1,5% азелаиновой, 4Д% себациновой 21,2 % 1,9-нонандикарбоновой, 61,7 % 1,10-декандикарбоновой кислот и неидентифицированный органический остаток [34]. Как видно, способ получения 1,10-декандикарбоновой кислоты окислением циклододеканона воздухом не имеет перспективы практического использования из-за малой селективности и трудности выделения чистого целевого продукта. [c.217]

    Кэмпбелл и сотр. [73] применяли двухступенчатый метод анализа для определения содержания влаги в хлорате лития. Пробу массой 30 г смешивали с сухим песком (катализатор) и нагревали выше температуры разложения Ь1С10з. Выделяющиеся кислород и влагу собирали в ловушке, охлаждаемой жидким азотом. Затем конденсат нагревали до О °С, добавляли измеренное количество сухого этилового спирта и полученную смесь анализировали методом газовой хроматографии. Градуировочный график получали путем хроматографического анализа проб спирта объемом [c.319]

    Со, Мп, Сг, 8с и 8Ь 10 % Ре, 2п и Н в смолах не найдены (при чувствительности определения, равной 10 масс. %). Содержание серебра в асфальтепах в 4,7 раза меньше, чем в смолах. Уровни концентрации в аефальтенах составили 10 масс. % — для Ре, Ка, N1, Вг 10 масс. % — для V, 2п и Сг 10 " масс. % — для Со и Мп 10 масс. % — для Л , 8Ь, Hg, 8с. В составе асфальтенов предпочтительнее концентрируются Ре, Хп, Н (на 100 %), 8Ь (на 90 %), Сг, Ма, Вг (на 74-80 %) (табл. 6.99). Концентрация почти всех элементов в ас-фальтенах значительно выше, чем в смолах. Атомы ванадия концентрируются преимущественно в составе непорфириновых молекул, обладающих умеренной полярностью и повышенной степенью ароматичности. Сравнительно небольшая часть (от 4 до 30 %) находится в виде ванадийпорфиринов. Остальные микроэлементы при хроматографировании преимущественно аккумулируются в высокополярных фракциях, обогащенных кислородом и серой. Ре-и Ка-содержащие компоненты малоустойчивы, легко разрушаются при контакте с активной поверхностью адсорбентов, поэтому 77-98 % их элюируются из органической фазы в ходе хроматографического анализа, V, А , Н , Мп, N1, Со и Хп образуют с асфальтенами и смолами более прочные комплексы, причем 70 и более процентов металлов сохраняются в составе высокомолекулярных соединений (табл. 6.99). [c.559]

    Этот механизм образования окислов углерода подтверждается сравнением данных, полученных при окислении меченых С диэфиров, с результатами хроматографического анализа. Были рассчитаны доли разрывов но а-, Р- и другим С — С-связям по отношению к общему числу раз-рывов в диметиловых эфирах. Для диметилпимелата доля разрывов по С — С-связям достигает 0,38 при поглощении 3,3 молъ1л кислорода. Доля [c.71]

    В про 1,ессе газо-хроматографического анализа продуктов терыоокислительиой деструкции часто приходится определять небольшие количества какого-либо компонента в присутствии значительных оличеств к гслорода. Например, в процессе термоокисления пленок ударопрочного полистирола [55] толш,иной 30 мк (навеска 0,07 г) при сравнительно большом объеме системы (200 мл) образуются кон 1,ентрации СО и СО в кислороде 0,03— 2,0%. [c.180]

    Общая схема исследования полимерных соединений методом реакционной газовой хроматографии может быть представлена следующим образом. Анализируемое нелетучее вещество под действием химических реагептов (кислота, щелочь, кислород и т. д.), а также под действием физических факторов (высокая температура, различные виды облучения) дает летучие продукты, природа и количество которых находятся в определенной связи со структурой и составом анализируемой системы. Поэтому данные газо-хроматографического анализа по составу летучих продуктов деструкции полимеров позволяют более или менее полно охарактеризовать состав и структуру анализируемого полимера. В настоящей главе рассматриваются реагентно-функциональная газовая хроматография, основанная па направленных реакциях химических реагентов с анализируемым полимером [c.193]

    Хроматографические методы анализа настоятельно необходимы для решения зар.ач определения примесей в продуктах и сырье криогенной промышленности по следующим причинам. Прежде всего в ряде случаев необходима раздельная характеристика всех примесей в отдельности. Так, например, в воздухоразделительной технике из условий взрыво-безонаспости производства следует ограничивать содержание не всех примесей органических веществ, а лишь некоторых из них. При этом требования к п]зедельно допустимым содержаниям каждой примеси определяются ее вз1)ывоонасностью, а также растворимостью в жидком кислороде. Аналогичные требования предъявляются к чистоте гелия, используемого в криогенных системах, так как предельно допустимые концентрации примесей в этом случае ограничены их температурами конденсации и плавления. Дру] им преимуществом хроматографических методов анализа примесей является возможность определения весьма низких концентраций, обусловленная как наличием высокочувствительных детекторов, так и сочетанием хроматографического анализа с концентрированием. [c.262]

    При мышечной работе, особенно в условиях кислородной задолженности, гликоген быстро потребляется. При напряженной мышечной деятельности использование гликогена происходит в значительной мере анаэробным путем с образованием молочной кислоты. Последняя поступает в ток крови и вместе с кровью доставляется в печень, где из молочной кислоты (при достаточном поступлении в печень с током артериальной крови кислорода) вновь синтезируются углеводы (гликоген). Количество гликогена в мышцах может резко уменьшаться при ряде патологических состояний. X. С. Коштоянц и 3. Я неон показали с помощью хроматографического анализа, что в денервированных мышцах состав гликогена существенно меняется. [c.423]

    Рабочую смесь этилен — углекислота составляли в буфере установки по давлению и выдерживали для осушки длительное )>ремя над прокаленной окисью алюминия. Точный состав смеси определяли по данным хроматографического анализа. В работе использовался этилен бакинского завода и балонная углекислота. Этилен содержал 0,0I% кислорода и 0,3% этана. [c.49]

    Таким образом, при хроматографическом анализе олигомеров растворитель, используемый в качестве подвижной фазы, должен обладать достаточно высокой полярностью, обеспечивающей отсутствие адсорбционных эффектов, и иметь показатель преломления, максимально отличающийся от показателя преломления анализируемого образца. Выполнение последнего требования позволит не только избежать рефрактометрической ошибки, но и, вследствие повышения при этом чувствительности детектирования, исключить концентрационные эффекты. Указанные требования не являются взаимоисключающими, поскольку растворители с большей полярностью, благодаря наличию в них кислород- или азотсодержащих функциональных групп (спирты, эфиры, кетоны, амиды и т. п.), обладают меньшими показателями преломления по сравнению с менее полярными углеводородами и их галогензамещеиными. [c.234]

    Проведение анализа. Перед началом анализа прибор проверяют на герметичность. Создают вакуум при иомогци напорной склянки одной нз измерительных бюреток. После устранения обнаруженных неплотностей систему и колонку продувают углекислым газом со скоростью 40 мл1мин. Для анализа в бюретку 5 забирают 100 мл газа. Определяют суммарное содержание двуокиси углерода и сероводорода поглош,ением в 33%-ном растворе КОН. Содержание кислорода определяют поглощением в растворе пирогаллола. Остаток газа после абсорбционного анализа остается в бюретке 5 для дальнейшего хроматографического анализа. Часть этого газа расходуется на промывку системы. Замеренное количество газа, примерно 20—25 мл, направляется на колонки 1 ж 2. При этом водород, азот, метан, этан и этилен выделяются вместе и направляются в бюретку 6, где сохраняются для дальнейшего анализа. На колонках 1 и 2 при той же скорости потока углекислого газа разделяют углеводороды Сд, С4 и Сд в следующей последовательности сначала выделяется пропан, затем пропилен, изобутан, к-бутан, сумма бутиленов, изопентан, к-нентан и сумма амиленов. При выделении углеводородов С4 скорость потока углекислого газа увеличивается до 60 мл мин. При разделении углеводородов Сд скорость потока газа-носителя составляет уже 80 мл/мин. На разделение углеводородов Сз, С4 и С5 требуется 40—50 мин. Отсчеты объема газов в бюретке производят через каждые 15 сек. [c.200]


Смотреть страницы где упоминается термин Кислород хроматографический анализ: [c.119]    [c.141]    [c.127]    [c.140]    [c.47]    [c.405]    [c.3]    [c.152]    [c.271]    [c.162]    [c.51]    [c.22]    [c.92]    [c.405]    [c.14]    [c.129]   
Газовая хроматография в биохимии (1964) -- [ c.164 , c.176 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ хроматографический



© 2025 chem21.info Реклама на сайте