Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газы магния

    Реактивы и оборудование. Цилиндр с сернистым газом. Магний в порошке (или лента). Металлическая ложечка на длинном стержне. [c.119]

    Выполнение. Насыпав на металлическую ложечку порошок магния, поджечь его в пламени газовой горелки и быстро (как можно скорее ) внести ложечку в цилиндр с сернистым газом. Магний продолжает гореть. [c.119]

    Проведение опыта. Очищенную от окисной пленки ленту магния взять щипцами, поджечь пламенем горелки и внести в цилиндр с углекислым газом. Магний продолжает гореть, при этом слышно характерное потрескивание, и на стенках цилиндра оседают частицы угля. [c.77]


    Восстановление сернистого газа магнием. Собрать прибор (см. рис. 66 трубчатую печь заменить горелкой и в тугоплавкую трубку вставить железную трубку). [c.172]

    При исследовании термодинамики (взаимодействия между ионами и водой в раствора с фторидов различных металлов с электронной конфигурацией благородных газов Магну-сон [67] нашел, что ионные связи делокализованы и простираются дальше расположения молекул воды в координационных сфера с. В растворах этих электролитов гидратация протекает также и за счет ковалентных связей. [c.575]

    Окись углерода можно получить восстановлением углекислого газа магнием. [c.95]

    Сернистый ангидрид и его водные растворы не вызывают коррозии. магния. В жидком и газообразном аммиаке в течение 7,5 лет испытаний не было обнаружено заметной коррозии. В природном газе магний также не корродирует, а присутствие влаги приводит лишь к очень слабой коррозии. Жидкий или газообразный фреон (СС аРз) на магний не действует, но в присутствии воды он заметно корродирует. [c.165]

    Натрий. . . Натрий (газ) Магний. . .  [c.204]

    Рассуждая таким образом, можно сказать, что щелочноземельные элементы (магний, кальций, стронций и барий) похожи друг на друга также по этой причине у каждого из них на внешней оболочке по два электрона. На внешних оболочках атомов галогенов (фтора, хлора, брома и иода) по семь электронов, а на внешних оболочках инертных газов (неона, аргона, криптона и ксенона)— по восемь. [c.158]

    При обычной температуре и рассеянном освещении реакция протекает крайне медленно. При нагревании смеси газов пли действии света, богатого ультрафиолетовыми лучами (прямой солнечный, свет горящего магния и др.), смесь взрывается. Как показали многочисленные исследования, эта реакция проходит через отдельные. элементарные процессы. Прежде всего за счет поглощения кванта энергии ультрафиолетовых лучей (или за счет нагревания) молекула хлора диссоциирует на свободные радикалы — атомы хлора  [c.200]

    Катализаторы конверсии бензиновых фракций с водяным паром при низких температурах, низком и среднем давлении. Низкотемпературная паровая каталитическая конверсия жидких углеводородов является сравнительно новым способом получения метансодержащего газа — заменителя природного газа (см. табл. 25). Процесс этот осуществляется на активных промотированных никелевых катализаторах с повышенным (до 50%) содержанием никеля при пониженных температурах (320—540° С). В качестве промотирующих добавок используют окислы следующих металлов калия, бария, магния, кальция, стронция, лантана, цезия и др. Иногда процесс проводят при рециркуляции части полученных газов (после освобождения их от двуокиси углерода). Весовое отношение пар углеводород может колебаться в пределах от единицы до шести,, а давление — от близкого к атмосферному до 30 атм. Весовая ско рость подачи жидкого сырья может доходить до 3 ч . [c.41]


    Для уменьшения неизбежного в этих условиях сажеобразования в реактор вместе с сырьем вводят ацетаты никеля, калия и магния. Полученный газ направляют на вторую ступень процесса, где на стационарном нанесенном хромовом катализаторе достигается полная конверсия углеводородов и сажи с паром и кислородом. Возможен и одноступенчатый процесс парокислородной конверсии тяжелого нефтяного сырья на стационарном хромовом катализаторе при температуре 1450° С. Сажа, образующаяся в лобовых слоях катализатора, полностью газифицируется в хвостовых слоях примененного контакта. Этот процесс проводят под давлением 30 атм. [c.53]

    I Примером гомогенной системы может служить любая газовая смесь (все газы при не очень высоких давлениях неограниченно растворяются друг в друге), хотя бы смесь азота с кислородом. Другим примером гомогенной системы может служить раствор нескольких веществ в одном растворителе, например раствор хлорида натрия, сульфата магння, азота и кислорода в воде. В каждом из этих двух случаев система состоит только из одной фазы из газовой фазы в первом примере и из водного раствора во втором  [c.171]

    Фирма И. Г. Фарбениндустри в качестве катализаторов предложила использовать фосфаты и соли бора с добавлением в исходную смесь небольших количеств окислов азота. Для этого же процесса могут быть использованы окислы кремния, цинка, магния, титана, церия и др. В настоящее время работает одна опытнопромышленная установка по неполному окислению метана с целью получения формальдегида [109]. Процесс проводится при атмосферном давлении и температуре около 600°. На смеси, состоящей из воздуха и метана в отношении 3,7 1 и содержащей 0,08% окислов азота, при девятикратной рециркуляции реагирующей смеси получается выход формальдегида 35%, считая на израсходованный метан. В последние годы советскими исследователями был разработан новый процесс получения формальдегида неполным окислением сухого природного газа (метана) и попутного нефтяного газа [110, 111]. Процесс является экономически выгодным и в настоящее время внедряется в промышленность. [c.87]

    Формула МдО белый, пушистый порошок реагирует медленно с водой, образуя гидроксид магния поглощает из воздуха влагу и углекислый газ. [c.148]

    Вакуум в печи создается специально как способ для осуществления некоторых термотехнологических процессов, которые невозможно провести в плотной газовой среде, или как средство для защиты во время их получения или термической обработки. В вакууме взаимодействие металла с внешней газовой средой замедляется и практически прекращается при достижении глубокого вакуума. Снижение внешнего давления над металлом благоприятствует выделению из расплава растворенных газов и устраняет возможность окисления металлов. В особо благоприятных условиях становится возможным восстановление металлов и оксидов. Например, в обычных условиях при атмосферном давлении процесс восстановления оксида магния углеродом не протекает, но становится возможным в вакууме. При наличии восстановителя в разреженном пространстве оксид магния становится непрочным соединением. Равновесие взаимодействия углерода с оксидом магния смещается в сторону образования элементарного магния MgO + С Mg (г.) + СО (г.). Причиной этого является высокое давление насыщенных паров магния, вследствие чего в глубоком вакууме он находится в парообразном состоянии и постоянно выводится из равновесного состояния отсасывающей системой, что способствует распаду MgO. [c.78]

    Подобную же группу составляют, например, гексафториды серы, молибдена и урана. В каждой из этих групп увеличение молекулярного веса соединения связано с возрастанием энтропии. На рис. П1,5 подобное же сопоставление дано для энтропии (Sr) некоторых групп окислов металлов в кристаллическом состоянии. Здесь наблюдаются такие же закономерности, как и для энтропии газов. Отчетливо выделяется группа, линий моноокисей магния, кальция и бария,группа линий полуторных окислов алюминия, хрома и лантана и группа пятиокисей ниобия и тантала. В каждую из таких групп входят также не показанные на рисунке линии других однотипных с ними соединений. [c.101]

    Влияние температуры на атомарные теплоты образования вполне аналогично описанному для АН других реакций (см. 22— 24 и 26). Для газов метод однотипных реакций может применяться и в форме метода разностей, и в форме метода отношений. В табл. IV, 16 приведены АН1 окислов магния, кальция, стронция и бария н соотношения между ними. Как и для других параметров, постоянство Хн и ан лучше всего выдерживается в паре СаО—SrO, [c.162]


    В опытах Луза в жидком и газообразном аммиаке магний не подвергался заметной коррозии в течение 7,5 лет. В природном газе магний, по данным того же автора, не корродирует. Присутствие влаги приводит к слабой коррозии. Жидкий или газообразный фреон (ССЬРг) на магний не действует, но в присутствии воды металл под воздействием этого вещества корродирует. [c.306]

    Значительной бывает роль азота в металлургии и при металлообработке. Различные металлы в расплавленном состоянии реагируют на присутствие азота по-разному. Медь, например, абсолютно инертна по отношению к азоту, поэтому изделия из меди часто сваривают в струе этого газа. Магний, напротив, при горении на воздухе дает соединения не только с кислородом, но и с азотом. Так что для работы с изделиями из магния при высоких температурах азотная среда неприменима. Насыщение азотом поверхности титана придает Л1еталлу большую прочность и износостойкость — на ней обра.зуется очень прочный и химически инертный нитрид титана. Эта реакция идет лишь при высоких температурах. [c.122]

    Большая трудность при проведении синтеза но Фишеру-Тропшу с кобальтовым катализатором состоит в том, что на 1 синтез-газа развивается приблизительно 600—700 ккал тепла, которое должно быть отведено, потому что температура катализатора должна поддерживаться с точностью до 1°. Промышленный катализатор на кобальтовой основе содержит на 100 частей кобальта 5 частей окиси тория, 8 частей окиси магния и 200 частей кизельгура. Катализатор отличается чрезвычайно низкой теплопроводностью и поэтому проблема отвода тепла становится особенно трудной. Контактная камера установки Фишера-Тропша, вмещающая 10 кобальтового катализатора, может из-за плохого отвода тепла пропустить лишь 1000 синтез-газа в час. Требуемая поверхность охлаждения для 1000 синтез-газа составляет около 3000 м . Из 1 газа получают 165 —175 г целевых углеводородов. В настоящее время современные установки синтеза Фишера-Тропша работают только с железным катализатором, состоящим практически только пз железа и обладающим значительно лучшей теплопроводностью. [c.27]

    О кремния к алюминию и далее к s-элементам магнию и натрию число валентных электронов уменьшается, а число свободных валентных эрбиталей увеличивается. Это понижает прочность двухцентровой связи и усиливает тенденцию к образованию нелокализованной, а в пределе — металлической связи (электронного газа). [c.233]

    Нефть, извлекаемая из скважин, всегда содержит в себе попутный газ, механические примеси и 1тластовую воду, в которой растворены различные соли, чаще всего хлориды натрия, кальция и магния, реже — карбонаты и сульфаты. Обычно в начальный период эксплуатации месторождения добывается безводная или малооб — нодненная нефть, но по мере добычи ее обводненность увеличива — (гтся и достигает до 90 — 98 %. Очевидно, что такую "грязную" и сырую нефть, содержащую к тому же легколетучие органические (от метана до буп ана) и неорганические (Н 5, СО ) газовые компоненты, нельзя транспортировать и перерабатывать на НПЗ без тщательной ее промысловой подготовки. [c.142]

    Часть сульфита магния иод действием кислорода, содержащегося в очищаемом газе, окисляется до сульфата. Для уменьшения образованип сульфата магния, не сиособного поглощать [c.58]

    В ряде случаев метод защиты инертными газами применяют без достаточного обоснования или также необоснованно не применяют. Порошки некоторых металлов в среде азота и двуокиси углерода способны реагировать с выделением тепла и воспламеняться с последующим взрывом в отсутствие кислорода пыли магния и его сплавов, титана, циркония и тория способны взрываться в атмосфере чистой двуокиси углерода. Поэтому защита от взрыва таких пылей указанными инертными газами невозможна. Следует принимать дополнительные меры по предупреждению взрывов пылей этих материалов. Технологические же процессы, связанные с получением и обработкой алюминиевого порошка, можно безопасно проводить в атмосфере азота. [c.283]

    При монтаже прибора определяют объем капиллярного пространства гребенки с отростками, заполняя его водой или ртутью с последующим вытеснением ее и взвешиванием на аналитических весах. Обычно этот объем не превышает 1,5 см . Для упрощения расчетов в бюретку обычно набирают 98,5 см газа, тогда его суммарный объем составит 100 см . Бюретка должна быть чисто вымыта, чтобы запирающая жидкость свободно стекала по ее стенкам от этого зависит правильность отсчетов. Обычно дают жидкости стекать в течение 1 ман. Время измеряют песочными часами. В качестве запирающей жидкости служит насыщенный раствор хлористого магния или 10%-ный раствор серной кислоты, подкрашенной метилоранжем. В этих растворах СО2 почти не растворяется, вследствие чего исключается неточность определения содержания этого колшонента в исследуемом газе. [c.242]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    Конверсию СО проводят при избытке пара и в присутствии катализаторов. Катализаторы, применяемые в промышленности для конверсии окиси углерода, в зависимости от рабочей температуры условно разделяют на среднетемпературные (в пределах 350—550 С) и низкотемпературные (175—300°С). Основным компонентом среднете.мпературного железохромового катализатора 482 является окись железа, а низкотемпературных катализаторов— медь и ее соединения, окислы цинка, хрома, алюминия, магния и др. Активность катализатора воостапавливают газовой смесью, содержащей водород и окись углерода. Низкотемпературный катализатор на основе меди более чувствителен к отравлению сернистыми соединениями. Поэтому при работе с низкотемпературным катализатором газ, пар и конденсат должны быть более чистыми. [c.35]

    За неоном идет натрий — одновалентный металл, похожий на литий. С ним как бы вновь возвращаемся к уже рассмотренному ряду. Действительно, за натрием следует магний — аналог бериллия потом алюминий, хотя и металл, а не неметалл, как бор, но тоже т )схвалентный, обнаруживающий некото1)ые неметаллические свойства. После него идут кремний — четырехвалентный неметалл, во многих отношениях сходный с углеродом пятивалентный фосфор, по химическим свойс1вам похожий на азот сера — элемент с резко выраженными неметаллическими свойствами хлор — очень энергичный неметалл, принадлежащий к той же группе галогенов, что и фтор, и, наконец, опять благородный газ аргон. [c.49]

    Фиалков Ю. Г. Исследование процессов абсорбции фтористого водорода и хлора из отходящих газов электролитического производства алюминия и магния в полых колоннах. Л., Лнторе-( ерат диссертации иа соискание ученой стеиени канд. техн. наук, 1971. [c.267]

    Вулканическая гипотеза признает возможность возникновения углеводородов в магматических очагах, залегающих в основании ныне действующих и потухших вулканов. В газовых эманациях, выделяющихся из магмы, содержатся наряду с другими газами и углеводороды, которые, попадая в верхние части земной коры, конденсируются и скопляются в трещинах, пустотах и пористых пластах. Цногда изверженные огненно-жидкие массы, пересекая при своем подъеме битуминозные породы (угли и сланцы), явля ются причиной возникновения продуктов перегонки, или дистилляции этих пород (жидкие битумы в шотландских горючих сланцах и др.). Какой же фактический материал привлекается в ее обоснование Во-первых, близкая связь некоторых нефтяных месторождений с изверженными породами и нахождение нефти в самих изверженных породах во-вторых, нахождение в вулканических эманациях метана, жидких углеводородов и твердых парафинов в базальтовых лавах близ вулкана Этны подобное же явление наблюдалось в вулканах Японии в-третьих, наличие в некоторых нефтяных месторождениях горячих вод глубинного (ювенильного) происхождения. Высокий процент во многих водах нефтяных месторождений хлористых кальция и магния некоторые исследователи склонны объяснить их глубинным происхождением. [c.307]

    Реакция проводится в пседоожиженном слое катализатора, который состоит из 16... 18% оксида хрома, 4,2...5,4% оксида магния и оксида алюминия в качестве наполнителя. В реактор с катализатором подается сероводородсодержащий газ и воздух при температуре 300°С. Количество воздуха рассчитывают из соотношения сероводорода в газе и кислорода в воздухе, которое должно составлять 1 (0,47-0,49). [c.132]

    М . По данным работы теплота плавления равна 2,026 ккал/моль. См. также работу В табл. 4 и 5 данные приведены по рекомендациям В ней на основе сопоставления свойств одноатомного газа и ргонденсированных фаз температура кипения магния принята равной 1378 К и ДЯ = 30,5 ккал/моль. [c.344]

    В качестве противодымных присадок к топливам рекомендованы гидразин, а также соли его и растворимых в нефтепродуктах алкилзамещенных бензолсульфокислот, комплексы норборна-диенов с солями металлов переменной валентности, ацетилацето-наты железа, кобальта и меди, а также ферроцен и карбонилы железа. С целью снижения дымности выхлопных газов дизельных двигателей предлагается вводить в топливо растворимые в нем органические соли щелочноземельных металлов, а также сульфонаты кальция, бария или магния в виде растворов в легком бензине [15, с. 341]. Добавление к дизельному топливу дидецилсульфо- [c.280]

    Основной причиной дезактивации катализаторов является закоксовывание или отравление. Регенерация иногда достигается обработкой паром пли потоком кислородсодержащего газа прп высоких температурах. В таких условиях может ускориться спекан1ге, и тогда исходная активность катализатора не восстановится. Образование углистых отложений на катализаторе в некоторых случаях можно подавить, добавляя небольшие количества калия или оксида магния [36]. [c.32]


Смотреть страницы где упоминается термин Газы магния: [c.19]    [c.42]    [c.312]    [c.214]    [c.632]    [c.668]    [c.223]    [c.366]    [c.316]    [c.138]    [c.36]    [c.91]    [c.94]   
Пылеулавливание и очистка газов в цветной металлургии Издание 3 (1977) -- [ c.396 ]




ПОИСК







© 2025 chem21.info Реклама на сайте