Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия металлов атмосферная химическая

    Для защиты металлов от атмосферной коррозии широко применяют нанесение различных защитных неметаллических (смазки, лакокрасочные покрытия) и металлических (цинковых, никелевых, многослойных) покрытий или превращение поверхностного слоя металла в химическое соединение (окисел, фосфат), обладающее защитными свойствами. [c.383]


    Существует также ряд способов оценки количества продуктов износа непосредственно в масле, когда для определения концентрации в масле соответствующих металлов проводят химический или инструментальный анализ. Инструментальные методы (в частности, колориметрический, фотоколориметрический, полярографический и спектральный) предпочтительнее, чем трудоемкие химические методы. Наибольшие преимущества имеют методы спектрального анализа, позволяющие одновременно определять содержание нескольких элементов. При использовании аналитических методов следует иметь в виду, что некоторые металлы могут попадать в масло не только как продукты износа, но и из других источников (например, в составе атмосферной пыли, в результате коррозии), поэтому содержание продуктов износа, определяемое химическим и спектральным анализами, может быть завышено. [c.17]

    Никель — белый металл, по прочности равный стали, имеет высокую стойкость к атмосферной и водной коррозии. Скорость атмосферной коррозии, составляющая 0,02—0,2 мкм в год, с увеличением срока службы покрытия стремится к снижению благодаря пассивации поверхности металла в результате образования инертной окисной пленки. Никель — пластичный металл, однако пластичность никелевого покрытия зависит от метода его нанесения и чистоты. Многие никелевые покрытия, получаемые в процессе электроосаждения (особенно в присутствии органических блескообразователей), могут быть хрупкими и иметь высокие внутренние напряжения. Никелевые покрытия, осаждаемые химическими способами, обладают большой твердостью, хрупкостью и низкими коррозионными характеристиками из-за образования фосфора и бора в осадках (что характерно для осаждения из сложных растворов). [c.117]

    Помимо метеорологических факторов, оказывающих влияние на продолжительность нахождения влажной пленки на поверхности металла, не менее важное значение при атмосферной коррозии металлов имеет химический состав атмосферных осадков. Осадки, выпадая, увлекают за собой частицы твердых, жидких и газообразных веществ самого различного происхождения, благодаря чему происходит увеличение концентрации электролитов. Постоянными компонентами атмосферы являются азот, кислород, углекислый газ, атмосферная вода и инертные газы. Концентрация промышленных газов, а также морских солей колеблется в довольно широких пределах в зависимости от характера промышленных районов, географических условий и сезонных циклов. В приморской зоне в атмосферных осадках доминируют хлоридно-натриево-сульфатные соли, а вдали от моря — гидро-карбонатно-кальциево-сульфатные. Атмосферные осадки в промышленных районах содержат в основном сернистые соединения, являющиеся коррозионноактивными веществами. Так на территории Батумского машиностроительного завода, расположенного на расстоянии примерно 1,5 км от морского побережья, скорость коррозии стали почти в 3 раза больше, чем в промышленном районе, удаленном от побережья, и приморских районах. [c.19]


    Коррозия металлов 13 присутствии воды и атмосферного кислорода может происходить как в результате обычных химических реакций окисления, так и в результате электрохимических процессов анодного растворения металла и катодной кислородной или водородной деполяризации. Применение изотопного метода позволяет отличить коррозию, являющуюся следствием прямого химического окисления и последующей гидратации продуктов коррозии, от электрохимической коррозии с кислородной деполяризацией. Не касаясь промежуточных стадий процесса, коррозию металлов по химическому механизму можно изобразить следующим уравнением  [c.299]

    Механизм сухой ат-атмосферной коррозии металлов аналогичен химическому процессу образования и роста на металлах пленок продуктов коррозии, описанному в гл. 1. Процесс сухой атмосферной коррозии металлов сначала протекает быстро, но с большим торможением во времени так, что через некоторое время ( порядка нескольких минут или десятков минут) устанавливается практически постоянная и очень незначительная скорость (рис. 130), что обусловлено невысокими температурами атмосферного воздуха. Так протекает процесс образования на металлах в кислороде или сухом воздухе тонких окисных пленок, что приводит к потускнению поверхности металлов. Если в воздухе содержатся другие газы, например сернистые соединения, защитные свойства пленки образующихся продуктов коррозии могут снизиться, а скорость коррозии в связи с этим несколько возрасти. Однако, как правило, сухая атмосферная коррозия не приводит к существенному коррозионному разрушению металлических конструкций. [c.242]

    Равномерная коррозия — наиболее часто встречающийся на практике вид коррозии металлов и сплавов. Она обусловлена химическими и электрохимическими реакциями, протекающими более или менее равномерно на всей поверхности металла, помещенного в коррозионную среду (водную, атмосферную и т. д.). [c.442]

    ВЛИЯНИЕ ХИМИЧЕСКОГО СОСТАВА АТМОСФЕРНЫХ ОСАДКОВ НА СКОРОСТЬ КОРРОЗИИ МЕТАЛЛОВ [c.19]

    Физико-химические и биологические свойства почвы тесно связаны со спецификой климатических условий, и она оказывает определенное воздействие на коррозионную активность околоземного слоя атмосферы. В зависимости от состава и внешней среды она может ускорить или затормозить процесс атмосферной коррозии металла. Влага и повышенная температура ускоряют физико-химические и биологические процессы в почве. Количество влаги в ней зависит не только от характера частиц почвы и количества атмосферных осадков, но и от ее способности удерживать почвенную влагу. Чем больше коллоидных частиц в почве, тем выше ее адсорбционная способность. [c.20]

    В последние годы резко расширяется использование аминов полиметиленового (алифатического и алициклического) ряда в качестве ингибиторов атмосферной коррозии металлов. Соединения этого класса по своим физико-химическим свойствам (относительно низкая летучесть, твердая либо маслянистая консистенция, хорошая растворимость в жирах и органических растворителях и др.) потенциально опасны при попадании на кожные покровы. При применении масляных растворов и антикоррозийных бумаг имеет место длительный контакт открытых частей тела и особенно кожи рук работающих с веществами. Особого внимания заслуживают так называемые контактные ингибиторы, встречающиеся в условиях производства в сочетании с маслами и различными органическими растворителями — известными транспортными агентами ядов при поступлении их через кожу. [c.50]

    Механизм сухой атмосферной коррозии аналогичен механизму химической коррозии. Вследствие химического взаимодействия компонентов атмосферы с поверхностью металла последняя покрывается слоем продуктов коррозии. В сухом воздухе при обычной температуре на поверхности металла слой продуктов коррозии нарастает очень медленно, причем через определенное время процесс почти совершенно прекращается. В результате этот вид [c.79]

    Причиной отказов в работе приборов и систем управления могут быть различные физико-химические -Процессы, протекающие в конструкционных материалах. Нередко это связано с атмосферной коррозией металлов (например, окисление контактов в слаботочных. цепях, разрущение токоведущих каналов в печатных н интегральных модулях электронно-вычислительной тех-.ники, изменение оптических параметров металлических светоотражающих поверхностей в оптических системах или в системах передачи электромагнитных колебаний), Совершенно очевидно, что все эти вопросы влияют на экономические показатели, а следовательно и на эффективность производства. [c.6]


    П. ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ АТМОСФЕРНОЙ КОРРОЗИИ МЕТАЛЛОВ [c.26]

    Влияние оксидов азота на коррозию металлов. Имеются ограниченные данные о влиянии оксидов азота на скорость коррозии металлов в атмосферных условиях. Вместе с тем химические свойства оксидов азота в известном смысле аналогичны свойствам сернистого газа. [c.63]

    Влияние других примесей в атмосфе-р е. Широкий спектр химических примесей в атмосфере антропогенной природы затрудняет оценку их влияния на коррозию металлов, особенно на фоне относительно больших концентраций таких загрязнений, как ЗОг, N02, С1 и др. Вместе с тем, можно заключить, что активаторами атмосферной коррозии металлов будут все примеси, способные при растворении в пленке влаги ионизироваться или подвергаться гидролизу. К этому классу примесей могут быть отнесены пары низкомолекулярных кислот (муравьиной, уксусной, пропио-новой и др.), многие элементоорганические соединения, которые могут быть выброшенными в атмосферу предприятиями лесохимической и деревообрабатывающей промышленности. [c.65]

    По своей сущности коррозию делят на химическую и электрохимическую. Ржавление железа или покрытие патиной бронзы — химическая коррозия. Если эти процессы происходят на открытом воздухе в комнатных и особенно в природных условиях, то такую коррозию часто называют атмосферной. В промышленном производстве металлы нередко нагреваются до высоких температур и в таких условиях химическая коррозия ускоряется. Многие знают, что при прокатке раскаленных кусков металла образуется окалина. Это типичный продукт химической коррозии. Окалина получается и при простой разливке на воздухе расплавленного металла в изложницы. [c.136]

    Химическая коррозия — результат взаимодействия металла с химически активными веществами. Частными случаями химической коррозии являются газовая водородная, карбонильная, сероводородная и некоторые случаи атмосферной коррозии. [c.7]

    Типы коррозии металлов и методы борьбы с коррозией. Процесс разрушения металлов при их химическом, электрохимическом или биохимическом взаимодействии со средой называется коррозией. Химическая коррозия происходит в газовых средах или неэлектролитах и не сопровождается возникновением электрического тока. Этот тип коррозии подчиняется законам химической кинетики. Электрохимическая коррозия может быть атмосферной, почвенной, происходить в растворах электролитов и в расплавах солей. Она сопровождается возникновением электрического тока и подчиняется законам электрохимии. [c.73]

    Золото. Чистое золото оказывается в атмосферных условиях исключительно стойким в отношении коррозии, что обусловлено химической инертностью самого металла, а не возникновением фазовых пленок. [c.306]

    Защита от коррозионного разрушения химического оборудования, трубопроводов, металлоконструкций является весьма актуальной задачей. Среди множества способов защиты металла от коррозии в атмосферных, газовых условиях, в условиях воздействия агрессивных жидких сред, расплавов солей и металлов — эмалирование металла наиболее эффективно. Институтом разработаны покрытия для эмалирования и внедрены в производство химически устойчивые покрытия для защиты химического оборудования, арматуры, труб и др. изделий от коррозии, (табл. 1). [c.81]

    Коррозионные и защитные свойства. Надежность и долговечность работы машин и механизмов во многом определяются эффективностью защиты металлических поверхностей от коррозии. Отсутствие коррозионного воздействия на металяь и защита их от корро.зионно-агресс1ив1ных компонентов внешней среды — требования ко всем нефтяным маслам. Особенно высоки эти требования к консервационным маслам, специально предназиаченньш для защиты машин и оборудования от атмосферной коррозии. Под слоем смазочного материала могут протекать химическая и электрохимическая коррозия металла. [c.35]

    Увлажнение атмосферы сопровождается изменением механизма коррозионного процесса. Слой влаги, обычно загрязненный присутствующими в воздухе химическими соединениями, играет роль электролита. Поэтому коррозия приобретает электрохимический характер. Однако в присутствии тонкого слоя электролита атмосферная коррозия металлов во многом отличается от коррозии металлов, погруженных в электролит. [c.80]

    Атмосферную коррозию, протекающую под молекуляр ным слоем влаги (до 10 нм), называют сухой атмосферной коррозией. Эта разновидность коррозии характеризуется поверхностным окислением металла по химическому механизму взаимодействия какого-либо реагента а газообразном виде. Например кислород воздуха или сероводород, клк примеси в воздухе, взаимодействуют с поверхностью металла (потускнение никелевых, цинковых, оловянных покрытий, латунных изделий, почернение медных, серебряных покрытий). [c.137]

    Наиболее распространенным видом атмосферной коррозии металла является влажная атмосферная коррозия, наблюдаемая при капиллярной, адсорбционной или химической конденсации влаги на поверхности металла при относительной влажности воздуха мецьще 100%. [c.174]

    О влиянии характера атмосферы на коррозию металлов можно судить по следующим данным, приведенным С. Г. Веденки-ным. Сроки службы проводов связи в сельской местности и в районах промышленных предприятий (металлургических и химических заводов, электростанций и т.д.) резко отличаются. Так, в первом случае они ие теряют своей эксплуатационной пригодности в течение 50—60 лет, а во втором — срок службы проводов ограничивается 4—5 годами, т. е. скорость коррозии в этих условиях в 10—15 раз выше. При воздействии дымовых газог скорость атмосферной коррозии стали достигает иногда 0,4— 0,8 мм год. [c.177]

    Металлические изделия при хранении и эксплуатации под воздействием окружающей среды (кислорода, влаги, химически активных продуктов) подвергаются коррозии и разрушаются. Нефтяные масла без присадок не в состоянии обеспечить длительную и надежную защиту этих изделий от коррозии. Чтобы улучшить защиту металлов от коррозии, в масла втаадят маслорастворимые органические вещества, препятствующие коррозии металлов в условиях атмосферного воздействия (электрохимической коррозии),— ингибиторы коррозии и под действием продуктов, содержащихся в маслах (химической коррозии), — противокоррозионные присадки. Ввиду различных причин коррозионного разрушения металлов приходится использовать в маслах присадки разных состава и механизма действия. [c.305]

    Под коррозией понимают физико-химическое или химическое взаимодействие между металлом и средой, приводящее к ухудшению функциональных свойств металла, среды или включающей их технической системы. Химическое взаимодействие определяет, главным образом, химическую коррозию, характеризующуюся непосредственным взаимодействием реагирующих частиц металла и среды без возникновения электрического тока. Физикохимическое взаимодействие характерно для электрохимической и механо-химической коррозии, сопровождающейся возникновением электрического тока (ток коррозии). При механо-химической коррозии (коррозионно-меха-ническом изнашивании) электрохимические процессы накладываются на механическое взаимодействие трение, напряжение, циклическое давление и др. В зависимости от вида коррозийной среды и условий протекания коррозионного процесса различают около 40 видов коррозии атмосферная, газовая, подземная, биокоррозия, контактная, коррозия при трении, щелевая и др. [c.365]

    Ингибиторы атмосферной коррозии представляю собой химические соединения, способные предотвра щать или тормозить коррозию металлов и их сплавов при непосредственном контакте с металлами (контактные ингибиторы) или в парофазном состоянии (летучие ингибиторы). В настоящее время насчитывается свыше сотни летучих ингибиторов, относящихся к различным классам органических соединений, но промыш ленное применение находят лишь немногие ннгибито ры, обладающие комплексом необходимых эксилуата ционных свойств, к летучим ингибиторам относятся следующие. [c.191]

    В атмосферном павильоне с жалюзими испытывали сплавы системы Л1-М2-Си А1-Мд Zп-Al-Mg, а также цинк (99,8%), электролитическую медь (99,9%), алюминий (99,5%) и электролитические и химические покрытия. Результаты испытаний металлов представлены в табл. V. 6. Для сравнения приведены данные о коррозии этих же металлов на воздухе в Батуми. В течение первых 3 месяцев с начала эксперимента метеорологические условия были следующими средняя месячная температура воздуха колебалась от -1-21,1 до +24,2 °С, относительная влажность — от 78 до 80%, количество осадков — от 81,1 до 335,5 мм, продолжительность смачивания — от 115 до 192 ч. Как видно из данных, скорость коррозии стали в открытой субтропической атмосфере намного выше, чем в павильоне ( в 20 раз). То же характерно и для цинка и меди. С алюминием происходит следующее вначале испытаний скорость коррозии алюминия в открытой атмосфере несколько меньше, чем в павильоне жалюзийном со временем она увеличивается и далее вновь падает. В конечном счете скорость коррозий алюминия в павильоне больше, чем в открытой атмосфере. Таким образом, в сильно агрессивных атмосферах коррозия металлов и сплавов на воздухе выше, чем в павильоне жалюзийном. Отсюда следует, что в тропических и субтропических районах изделия и оборудование следует хранить под навесом, брезентами или в складах. [c.77]

    Многочисленные наблюдения за процессами коррозии металлов во влажной атмосфере обратили внимание исследователей на то, что присутствующие в воздухе химические примеси (промышленные газы, аэрозоли и др.) проявляют свои активирующие свойства, только начиная с определенной влажности, зависящей от химической природы данного компонента. Известно, например, что такой сильный стимулятор атмосферной коррозии, как SO2, практически не взаимодействует с металлами в атмосфере с низкой относительной влажностью. Это явление нередко объяснялось особыми свойствами адсорбированных слоев влаги, которые не всегда способны растворять ионизирующиеся компоненты атмосферы . [c.52]

    Атмосферная коррозия развивается в условиях не прерывного изменения во времени и пространстве физико-химических параметров коррозионной среды. Многообразие факторов, влияющих на скорость коррозионно-электрохимических реакций в реальной атмосфере, является особенностью этого вида коррозии металлов. Установлению количественных связей между основными параметрами атмосферы и коррозионной стойкостью металлов посвящена значительная часть исследований последних лет [67—69].  [c.69]

    Средах, на основе справочного материала был правильным, конструктор или проектировщик должен знать основы теории коррозии и защиты металлов. Поэтому не случайно, что Справочник по коррозии болгарских авторов X. Рачева и С. Стефановой открывается разделом Коррозия металлов , в котором в доступной форме изложены основные положения теории коррозии и защиты металлов. Рассмотрение теоретических положений химической и электрохимической коррозии металлов, а также отдельных видов коррозии (атмосферной, подземной и др.) завершается изложением методов защиты. Большое внимание уделено ингибиторам коррозии, механизму их защитного действия и областям применения. В конце раздела дано описание коррозионного поведения основных металлов в наиболее характерных коррозионных средах. [c.6]

    Ингибиторы коррозии металлов. Применение ингибиторов — один из эффективных способов борьбы с коррозией металлов в различных агрессивных средах (в атмосферных, в морской воде, в охлаждающих жидкостях и солевых растворах, в окислительных условиях и т.д.). Ингибиторы — это вещества, способные в малых количествах замедлять протекание химических процессов или останавливать их. Название ингибитор происходит от лат. inhibere, что означает сдерживать, останавливать. Ингибиторы взаимодействуют с промежуточными продуктами реакции или с активными центрами, на которых протекают химические превращения. Они весьма специфичны для каждой группы химических реакций. Коррозия металлов — это лишь один из типов химических реакций, которые поддаются действию ингибиторов. По современным представлениям защитное действие ингибиторов связано с их адсорбцией на поверхности металлов и торможением анодных и катодных процессов. [c.150]

    Увлажнение атмосферы сопровождается изменением механизма коррозионного процесса. Слой влаги, обычно зафязненный присутствующими в воздухе химическими соединениями, является электролитом. Однако в присутствии тонкого слоя электролита атмосферная коррозия металлов отличается от коррозии металлов, полностью погруженных в электролит. Во-первых, в воздушной среде процессы коррозии протекают всегда с кислородной деполяризацией, т.к. тонкий слой электролита совершенно не препятствует диффузии кислорода воздуха к поверхности металла. Во-вторых, наличие кис.торода способствует переходу металла в пассивное состояние, т.е. торможению анодного процесса. [c.63]

    Топливо при отгрузке с завода должно иметь отрицательную пробу на медной пластинке. Это гарантирует присутствие сероводорода и свободной серы в такой концентрации, которая исключает химическую коррозию металлов топливной системы. Чистоту топлив оценивают по ГОСТ 19006-73 коэффициентом фильтруемости, определяемым как отношение времени фильтрования топлива через фильтр из бумаги БФДТ при атмосферном давлении десятой порции фильтруемого топлива к первой порции. Коэффициент фильтруемости хюзволяет оценить содержание в топливе всех видов загрязнений мехпримесей, воды, мыл нафтеновых кислот и смолистых продуктов окисления топлива. При повышенном содержании загрязнений коэффициент фильтруемости возрастает (норма -— не более 3). [c.115]

    В качестве фумиганта используется сульфурилфторид ЗОгРг. Это газ, т. кип. при атмосферном давлении —55,3°С. Давление насыщенных паров при 25 °С составляет 18,3 кг/см , критическая температура 96 °С. Мало растворим в воде (при 20°С 0,75 г в 1 л воды). Химически стабилен, не вызывает коррозии металлов и разрушения различных материалов. С гидроксидами щелочных металлов образует смесь фторидов с сульфатами. [c.356]

    Основным стимулирующим фактором атмосферной коррозии является вода. При относительной влажности воздуха до 60 % следы влаги на поверхности металла отсутствуют. В этом случае коррозия протекает по химическому механизму. Образующиеся на поверхности оксидные плен1си обладают защитными свойствами и тормозят развитие коррозионных разрушений (рис. 6.1). [c.151]

    Имеются многочисленные данные о сильном влиянии химического состава и структуры продуктов коррозии на кинетику атмосферной коррозии металлов [88, 113, 114]. Фейт-кнехт [115] считает, что скорость атмосферной коррозии металлов зависит от стехиометрического состава конечных продуктов реакций. С этой точки зрения особенно важным становится природа и концентрация агрессивных примесей, абсорбирующихся в продуктах коррозии. [c.178]


Смотреть страницы где упоминается термин Коррозия металлов атмосферная химическая: [c.365]    [c.365]    [c.189]    [c.27]    [c.45]    [c.25]    [c.38]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосферная коррозия

Атмосферная коррозия металло

Атмосферная коррозия металлов коррозия металлов

Атмосферная коррозия металлов металлов

Влияние химического состава атмосферных осадков на скорость коррозии металлов

КОРРОЗИЯ МЕТАЛЛОВ В АТМОСФЕРНЫХ УСЛОВИЯХ Физико-химические основы теории атмосферной коррозии

Коррозия металлов

Коррозия металлов атмосферная

Коррозия металлов коррозии

Коррозия металлов химическая

Коррозия химическая

Металлы химические

Физико-химические основы атмосферной коррозии металлов



© 2025 chem21.info Реклама на сайте