Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аспарагиновая кислота определение

    Рассмотрим способ определения Qa для аминокислот. В случае аспарагиновой Кислоты необходимо учитывать возможные конформации [c.152]

    Вскоре, однако, выяснилось, что знак вращения — признак неустойчивый. Существуют вещества, меняющие знак вращения в зависимости от условий (растворитель, температура, концентрация), в которых проводится поляриметрическое определение. Так, например, водный раствор природной яблочной кислоты при концентрации 70—50 % имеет правое вращение, при концентрации ниже 25 % — левое. Раствор природной аспарагиновой кислоты в воде при комнатной температуре вращает вправо, а выше 75 "С приобретает левое вращение. Таким образом, конфигурация непосредственно не связана со знаком вращения, последний — только признак единственный в случае пары оптических антиподов, один из признаков при сопоставлении пары диастереомеров ), позволяющий отличить друг от друга пространственные изомеры. Когда это стало ясным, появилась потребность обозначать не просто знак вращения, а конфигурацию оптически активных веществ, т. е. отражать в названии особенности пространственного строения молекулы данного стереоизомера, отличающего именно этот стереоизомер от других. Потребность эта появилась, однако, в то время, когда еще не умели определять абсолютную конфигурацию. [c.295]


    Оставшейся смеси дают охладиться выкристаллизовавшуюся фталевую кислоту отфильтровывают и промывают 350 мл 1%-ной соляной кислоты (примечание 4). Соединенные вместе фильтрат и промывные воды подвергают перегонке почти досуха на паровой бане при пониженном давлении чтобы удалить основную массу оставшихся соляной и уксусной кислот, в колбу через капельную воронку медленно прибавляют 300 мл воды, не прерывая при этом перегонку при пониженном давлении. Темнобурый остаток нагревают на паровой бане вместе с 700 мл воды, дают ему охладиться и раствор фильтруют, чтобы отделить небольшое количество черной нерастворимой примеси. Фильтрат обесцвечивают с помощью 2 г активированного березового угля и для промывания последнего используют 200 мл горячей воды. Объем соединенных вместе фильтрата и промывных вод достигает примерло 1 200 мл его точно измеряют и небольшую аликвотную часть анализируют с целью определения содержания хлора (примечание 5). Затем к раствору прибавляют в количестве, точно соответствующем содержанию хлора, пиридин, смешанный с 500 мл 95%-ного этилового спирта. Сразу выкристаллизовывается /-аспарагиновая кислота смесь оставляют стоять в течение суток при комнатной температуре, после чего кристаллы отфильтровывают и промывают 50—100 МЛ холодной воды (примечание 6). [c.68]

    Существует множество примеров зависимости катализа и связывания от конформационных изменений. Участок связывания химотрипсина решающим образом зависит от наличия солевого мостика между аспарагиновой кислотой-194 и концевой аминогруппой изолейцина-16 (см. рис. 24.1.14). В неактивном предшественнике химотрипсина, химотрипсиногене, например, каталитические группы расположены так же, как и в нативном ферменте, но гидрофобный карман отсутствует [49]. Последний формируется в результате индуцированных образованием солевого мостика изменений конформации аспарагиновой кислоты-194 и соседних остатков аминокислот — глицина-193 и метионина-192. Согласно кинетическим экспериментам, проведенным на химотрипсине, нечто подобное происходит при протонировании свободной формы (ЫНг) изолейцина-16. Форма фермента, характерная для высоких значений pH, неактивна, так как она не способна связывать субстрат. При быстром понижении pH раствора неактивной формы фермента с 12 до 7 связывание наблюдается, но только по прошествии определенного отрезка времени (менее секунды), во время которого фермент принимает активную конформацию [111]. В этом случае конформационное изменение должно предшествовать связыванию и явно слишком медленно для того, чтобы являться частью нормального механизма. [c.516]


    Анализ аминокислотного состава включает полный кислотный гидролиз исследуемого белка или пептида с помощью 5,7 н. соляной кислоты и количественное определение всех аминокислот в гидролизате. Гидролиз образца проводится в запаянных ампулах в вакууме при ПО "С в течение 24 ч. При этом полностью разрушается триптофан и частично серии, треонин, цистин и цистеин. а глутамин и аспарагин превращаются соответственно в глутаминовую и аспарагиновую кислоты. В то же время пептидные связи, образованные аминокислотными остатками с разветвленной боковой цепью (Val, Не. Leu), из-за стерических препятствий гидролизуются частично. Особенно стабильны связи Val—Val. Ile—Ile, Val—De и Ile—Val. [c.34]

    Определение бериллия. К 20 мл исследуемого раствора (pH = 5—6), содержащего 40 мкг и более Be +, прибавляют 5 мл этанола и 3 капли 0,1%-ного раствора арсеназо I или арсеназо П. Титруют 10 М раствором аспарагиновой кислоты до перехода фиолетовой окраски в розовую [144]. .  [c.90]

    Определение меди. К 20 мл анализируемого раствора (pH=6—7) добавляют 3 капли 0,1%-ного раствора арсеназо I и титруют 10 М раствором аспарагиновой кислоты до перехода фиолетовой окраски в розовую [144]. [c.91]

    Свободные аминокислоты чайного листа. П. Определение аспарагина и аспарагиновой кислоты [302]. [c.221]

    Свободная аминокислота в чайном листе. II. Определение аспарагина и аспарагиновой кислоты [2507]. [c.366]

    В клетке осуществляется синтез многих белков, для формирования которых требуется определенное соотношение аминокислот, поэтому контролируется не только синтез данной аминокислоты, но и общее координирование синтеза аминокислот в клетке. В бактериальной клетке, особенно молодой, эта координация хорошо изучена на примере Е.соИ для 4 аминокислот, ведущих начало от аспарагиновой кислоты — лизина, треонина, метионина и изолейцина (рис. 5.2). [c.123]

    Цель настоящей лабораторной работы познакомиться с методикой разделения на бумаге смеси простейших аминокислот — о-аланина и аспарагиновой кислоты (без количественного определения этих компонентов). [c.451]

    Наиболее общим методом определения концентрации пептидов является колориметрия продуктов реакции с нингидрином [2]. Это один из наиболее чувствительных колориметрических методов. Для обнаружения аминокислот и пептидов разработаны как обычный, так и полностью автоматизированный варианты, причем нингидриновый реагент не вызывает коррозии и его можно подавать обычным микронасосом. Реакция идет по свободным аминогруппам, но в некоторых случаях хромофор образуется с низким выходом. Данные по окрашиванию дипептидов можно найти в работе [3]. У всех дипептидов, содержащих в качестве Ы-концевой аминокислоты аргинин, треонин, серин, глутаминовую кислоту, глицин, фенилаланин, метионин, лейцин и тирозин, интенсивность окраски составляет 1,6-10 у лейцина эта величина составляет 1,7-10 . У дипептидов с М-концевым лизином и аспарагиновой кислотой интенсивность окраски несколько выше (на 20 и 29% соответственно), а дипептиды с Ы-концевым гистидином и триптофаном проявляются несколько слабее (42 и 67% соответственно от средней интенсивности). Дипептиды с М-концевым пролином, валином и изолейцином окрашиваются очень слабо [2,7 6,4 и 8,5% от средней (1,6- 10 ) интенсивности]. [c.391]

    При таком способе определению аспарагиновой кислоты не мешают винная, гликолевая, глиоксиловая, глутаминовая, диокси-винная, молочная, малеиновая, пировиноградная, уксусная, янтарная кислоты и аспарагин. Мешают определению уксусный альдегид и аскорбиновая кислота. [c.154]

    Смешивают 1 мл раствора, содержащего 0,02—0,4 мг а-аминокислоты [127], с 0,5 мл буферного раствора (рН = 5,3— 5,4) и 0,5 мл 3%-ного раствора нингидрина в метилцеллозольве. Нагревают 15 мин при 100 С, после чего добавляют 5 мл 50%-ного изопропилового спирта и взбалтывают. После охлаждения до комнатной температуры измеряют оптическую плотность красного раствора при 570 нм. Таким способом определяют аланин, аспарагиновую кислоту, аспарагин, валин, глицин, глутамин, глутаминовую кислоту, гистидин, изолейцин, лизин, метионин, орнитин, серии, таурин, тирозин, треонин, фенилаланин, этаноламин, а также аммиак. При определении пролина и оксипролина получают раствор, оптическую плотность которого измеряют при 440 нм. [c.169]

    ОПРЕДЕЛЕНИЕ АСПАРАГИНОВОЙ КИСЛОТЫ [c.314]

    Определение аспарагиновой кислоты 315 [c.315]

    Биохимическое расщепление основано на наблюдении Пастера, что грибки или бактерии, растущие в растворах рацемических соединений и питающиеся ими, почти всегда потребляют и разрушают лишь одну из обеих энантиоморфных форм, оставляя другую нетронутой. Таким образом, оказывается возможным выделение последней формы в чистом виде. Например, Peni illium glau um ассимилирует в растворе аммониевой соли d,/-винной кислоты только -форму и оставляет /-форму тот же грибок разрушает /-молочную, /-миндальную и /-аспарагиновую кислоты, а также /-лейцин. По-видимому, для того чтобы определенный микроорганизм мог ассимилировать какое-либо соединение, последнее должно обладать определенной пространственной конфигурацией представляется далее, что один и тот же грибок при одинаковых внешних условиях разрушает оптически активные формы с одинаковой конфигурацией. Однако грибок постепенно можно заставить ассимилировать и второй антипод. [c.135]


    Аспарагиновая кислота в свою очередь была использована для определения конфигурации тирозина (Вг СОСвНб)  [c.193]

    Интересно отметить, что нагревание определенных смесей а-аминокислот приводит к получению пептидоподобных молекул, называемых прогеноидами,. с молекулярным весом около 5000 и с нестатистическим распределением, причем глутаминовая и аспарагиновая кислоты, лизин и аланин входят в структуру протеноидов легче, чем другие аминокислоты [24]. [c.386]

    Поскольку парциальные заряды на полярных атомах боковых групп (лизина, аргинина, глутаминовой и аспарагиновой кислот)обычно в несколоко раз выше, чем для атомов основной цепи [101, то электростатические контакты между ними должны давать значительный вклад в стабилизацию белковой конформации. Исследование атом-атомных взаимодействий в -спиральных белках с известной пространственноЛ структурой позволяет сделать вывод о значительном количестве (9 ) электростатических контактов внутри структуры белка. Вклад одного гидрофобного контакта дает выигрыш энергии л/ o.s ккал/моль, а одного электростатического до 4 ккал/моль. В связи с этим проведенный адализ подтверждает необходимость учета этого типа взаимодействий при расчете энергии определенных конформаций белка. [c.141]

    Регистр химических соединений AS — это основанная на использовании ЭВМ система, которая идентифицирует введенные в нее химические вещества на базе их структуры и нрисваивает каждой определенной химической субстанции определенный номер, который представляет это вещество в ЭВМ. Например, D-аспараги-новая кислота имеет номер 1783-96-6, L-аспарагиновая 56-84-8, DL-аспарагиновая 617-45-8 и аспарагиновая кислота без уточнения стереохимии 6899-03-2 видно, что все пространственные формы имеют различные регистрационные номера. Регистрация началась [c.227]

    Тест Фуджино [387]. Тестовая система основана на взаимодействии Bo -Ala-Met-Leu-OH с ре/и-бутиловыми эфирами лейцина, изолейцина или же с (3-/ире/и-бутиловым эфиром аспарагиновой кислоты с последующим расщеплением бромцианом и определением соотношения диастереомеров прн помощи аминокислотного анализатора  [c.177]

    Пептидные связи по обеим сторонам остатка аспарагиновой кислоты в молекуле белка особенно легко гидролизуются разбавленными кислотами [233], приче степень гидролиза зависит от pH раствора, а не от концентрации используемой кислоты [32, 189]. Так, из альбумина сыворотки крови быка за 18 час при 100° и pH 2,14 выделяется 44% остатков аспарагиновой кислоты в виде аминокислоты, в то время как при pH 3,15 освобождается всего 26% остатков кислоты [189]. При экстракции эластина 0,25 М щавелевой кислотой при 100° был получен растворимый белок единственной выделенной свободной аминокислотой оказалась аспарагиновая кислота [235]. Однако присутствие в продукте реакции пептидов с короткой цепью и результаты определения концевых груМп [24, 234] указывают на значительную степень гидролиза и других пептидных связей. Исследования, проведенные на модельных соединениях [73], позволили сделать вывод о лабильности связей остатков серина и треонина. Применение описанного выше метода гидролиза для исследования цепи А окисленного [c.226]

    Один из видов РНК, так называемая РНК-посредник, или информащон-ная РНК переносит информацию на рибосому, где собственно и происходит синтез белка. В рибосому к информационной РНК поступает набор транспортных РНК, каждая из которых связана с определенной аминокислотой (о последовательности оснований в одной из этих 20 транспортных РНК, а именно об РНК, переносящей аланин, и шла речь на стр. 1062). Порядок поступления молекул транспортной РНК в рибосому, а следовательно, и последовательность включения аминокислотных остатков в белковую цепь зависит от последовательности оснований в цепи информационной РНК- Так, ГУА является кодовым словом для аспарагиновой кислоты, УУУ — для фенилаланина, УГУ — для валина. Существует 64 трехбуквенных слова (64 кодона) и лишь двадцать аминокислот, и поэтому одной и той же аминокислоте могут соответствовать несколько кодонов для аспарагина — АЦА и АУА, для глутаминовой кислоты — ГАА и АГУ. [c.1065]

    Не менее важными направлениями исследований являются иммобилизация клеток и создание методами генотехники (генного инженерного конструирования) промышленных штаммов микроорганизмов —продуцентов витаминов и незаменимых аминокислот. В качестве примера медицинского применения достггжений биотехнологии можно привести иммобилизацию клеток щитовидной железы для определения тиреотропного гормона в биологических жидкостях или тканевых экстрактах. На очереди-создание биотехнологического способа получения некалорийных сластей, т.е. пищевых заменителей сахара, которые могут создавать ощущение сладости, не будучи высококалорийными. Одно из подобных перспективных веществ —аспартам, который представляет собой метиловый эфир дипептида—аспартилфенилаланина (см. ранее). Аспартам почти в 300 раз слаще сахара, безвреден и в организме расщепляется на естественно встречающиеся свободные аминокислоты аспарагиновую кислоту (аспар-тат) и фенилаланин. Аспартам, несомненно, найдет широкое применение [c.164]

    Определение аспарагиновой и глютаминовой кислот (по В. Л. Кре-товичу и А. А. Бундель). Большие количества аспарагиновой СООНСНаСНКНгСООН (а-аминоянтарной) и глютаминовой СООНСНаСНаСНКНаСООН (а-аминоглутаровой) дикарбоновых моноаминокислот содержатся в белках растений. Содержание аспарагиновой кислоты в отдельных белках достигает 10%, а глютаминовой более 40%. Эти аминокислоты содержатся, в белках как в свободном [c.22]

    Элементы без жидкостных соединений были использованы Батчелдером и Шмидтом [65] для определения диссоциации аланина, аспарагиновой кислоты, аргинина и орнитина в растворах хлоридов калия, натрия и бария. [c.488]

    Реактивы фосфатный буфер, 0,1 моль/л раствор (pH 7,4) бромтимоловый синий, 0,04%-ный раствор субстратный раствор для определения АсАТ, содержащий а-кетоглутаровую и аспарагиновую кислоты субстратный раствор для определения АлАТ, содержащий аланин и а-кетоглутаровую кислоту 2,4-дннитро-фенилгидразин (2,4-ДНФ), раствор NaOH, 0,4 моль/л раствор пируват натрия, стандартный раствор, содержащий ПО мкг в 1 мл (что соответствует 88 мкг пировиноградной кислоты в 1 мл). [c.87]

    N-Бpoм yкцkнимид был использован также для декарбоксилирования аминокислот (кроме аспарагиновой кислоты) и для определения С-концевых групп в белках [29]. Позднее были определены оптимальные условия (pH и концентрации реагентов) для количественного декарбоксилирования аминокислот [96]. Добавление Р(1С12 ускоряло выделение СОг- [c.399]

    Водородные связи, которые обычно образуются в результате взаимодействия фенольного гидроксила тирозина (14) и карбоксила глутаминовой (24) или аспарагиновой кислоты, могут вносить свой вклад в стабилизацию третичной структуры. Ионные взаимодействия, например между р-карбоксильной группой аспарагиновой кислоты (18) и е-аминогруппой лизина (8), также, по-видимому, участвуют в стабилизации структуры. Ди-сульфидные связи могут быть образованы между боковыми цепями или группами К двух остатков цистеина (4, 10) естественно ожидать, что белковая структура, фиксированная такими связями, будет очень стабильна. Недавно было высказано предположение, согласно которому внутренняя часть белковой молекулы представляет собой каплю масла . Это дает основания утверждать, что гидрофобные взаимодействия могут быть важным фактором в определении третичной структуры. Неполярные группы К таких аминокислот, как фенилаланин (11), лейцин (13), триптофан (15), изолейцин (16) и валин (19), несовместимы с высокополярными молекулами воды. Рентгеноструктурное исследование подтвердило предположение, что эти группы стремятся разместиться во внутренней части пептидной цепи и исключить воду из своего непосредственного соседства. Стабилизация структуры белка, являющаяся результа-татом этого процесса, имеет энтропийную природу, и, хотя для белков оиа не может быть точпо рассчитана, ее можно оценить, измеряя термодинамические параметры переноса углеводородов из неполярных растворителей в воду. Например, переход [c.381]

    Определение аспарагиновой кислоты [7], При кипячении раствора аспарагиновой кислоты с серной кислотой, перманганатом и бромидом калия происходит ее дезаминирование, декарбоксили-рование, окисление и бромирование. В качестве конечного продукта при этом образуется дибромуксусный альдегид. В результате взаимодействия последнего с 2,4-динитрофенилгидразином получается 2,4-динитрофенилгидразон глиоксаля  [c.153]

    Эргот, содержит, кроме холина, аминокислот (тирозина, триптофана, гистидина, лейцина, аспарагиновой кислоты, бетаина) и биогенных аминов (гистамина и тирамина), несколько алкалог-гдов. Их трудно выделить в чистом виде вследствие превращений, которые они претерпевают в процессе операций очистки. Иоэтому алкалоиды спорыньи, описанные в более старой литературе, являлись вторичными аморфными продуктами илп не вполне определенными смесями. Выделение алка-. (оидов спорыньи в чистом виде и установление их строения было осуществлено В. А. Якобсом и главным образом А. Штоллом и их сотрудниками (1918—1950 гг.). [c.999]

    Полярные сегменты коллагеновой цепи содержат преимущественно остатки аспарагиновой кислоты, глутаминовой кислоты, лизина и аргинина. Часть глутаминовой кислоты, по-видимому, присоединена через у-карбоксильную группу, так как в результате представленных ниже реакций был выделен моноальдегид янтарной кислоты (8). Нативный коллаген не содержит доступных для определения Ы -концевых групп. [c.297]

    ОПРЕДЕЛЕНИЕ АСПАРАГИНОВОЙ КИСЛОТЫ ОКИСЛЕНИЕМ И БРОМИРОВАНИЕМ (АРИМО [33]) [c.314]

    Метод определения, а) Осаждение аспарагиновой кислоты. Аспарагиновую кислоту осаждают из белкового гидролизата по методу Ритгаузена — Форемана. [c.314]

    Основы метода. Все встречающиеся в природе я-аминокис-лоты, за исключением гликоколя, дезаминируются и декарбо-ксилируются при нагревании с водным раствором нингидрина. (трикетогидринденгидрата) (Руэман [559]) в разбавленной кислоте при этом образуются NHa, СО2 и соответствующий низший альдегид. Этой реакцией воспользовались Ван-Сляйк и др. [636, 637, 638] для определения лизина в осадке фосфорновольфрамовой кислоты (см. гл. I) также для определения глютаминовой и аспарагиновой кислот в смесях (см. гл. VI) Виртанен н др. [662, 663] использовали эту реакцию для определения аланина (см. гл. VII). [c.355]


Смотреть страницы где упоминается термин Аспарагиновая кислота определение: [c.350]    [c.948]    [c.732]    [c.186]    [c.209]    [c.488]    [c.495]    [c.386]    [c.347]    [c.414]    [c.314]   
Полярографический анализ (1959) -- [ c.456 ]




ПОИСК





Смотрите так же термины и статьи:

Аспарагиновая

Аспарагиновая кислота



© 2024 chem21.info Реклама на сайте