Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель наполнитель

    Наиболее часто используемым элементом является никель — активный компонент подавляющего большинства катализаторов конверсии углеводородного сырья. На втором месте находится алюминий, который (в составе окиси алюминия) входит в носители, наполнители, промоторы. Значительно реже встречается магний (в составе окиси магния). Еще реже в состав катализатора вводятся кальций, натрий, калий, уран, барий. В составе сырья относительно редко встречается кремний, титан, цирконий, хром, марганец. [c.17]


    На смешение направляют измельченные активные компоненты катализатора (металлы или окислы металлов VHI группы), наполнители (глинозем, магнезит и другие тугоплавкие материалы), связующее (цемент), воду или водный раствор кислоты (соли). Например, карбонат никеля, окись магния и пластическую глину смешивают в смесителе в течение 15 мин. Затем в смеситель добавляют водный раствор нитрата натрия и смешение продолжают еще 40 мин до получения однородной смеси. В другом примере смешение [c.21]

    В состав невосстановленных катализаторов рассматриваемого типа входит закись никеля (активный компонент) в сочетании с окислами двух металлов, один из которых — двухвалентный (бор или магний), а другой — трехвалентный (алюминий). Считается, что окисел двухвалентного металла в составе этих катализаторов выполняет роль промотора. Если принять это допущение, то окись алюминия должна рассматриваться как наполнитель, а образовавшиеся при взаимодействии упомянутых окислов двойные окислы типа МеО Ме Оз являются связующим материалом. Следовательно, в рассматриваемом случае отражены представители всех функциональных групп компонентов катализаторов. Обобщенная формула для этих катализаторов может быть записана обычным образом  [c.24]

    Наполнители. Для улучшения таких свойств прокладок, как теплопроводность, износостойкость и прочность [5, 9], применяют различные неорганические и органические наполнители. Окснды кальция н магния одновременно служат и ускорителями отверждения фенольных смол. Часто применяют оксиды меди, железа и цинка, а такл<е сульфиды (дисульфид молибдена, сульфиды железа и цинка). Для снижения теплопроводности в композицию вводят металлы, такие как железо, никель, магний, медь, бронзу и цинк в виде порошка или стружек. Графит и сульфид молибдена используют как смазочные вещества. В качестве наполнителей часто применяют пыль от истирания фрикционных накладок, отвержденный и тонкоизмельченный продукт взаимодействия дегтя (из скорлупы орехов кешью) и формальдегида [10]. Полагают, что этот продукт образует при торможении пленку на поверхности фрикционной накладки, и эта пленка компенсирует неровности на трущихся поверхностях и уменьшает износ. [c.243]

    Фильтрующие элементы из порошков никеля и монель-металла можно прессовать при удельном давлении прессования 2—4 Т см . В качестве наполнителя часто применяется парафин в количестве 3% (весовых). [c.217]

    Электропроводящие свойства лакокрасочных покрытий обусловлены образованием в полимерном связующем цепочных структур электропроводящего наполнителя. При высоких концентрациях электропроводящего наполнителя, например при введении 35— 40 % карбонила никеля, проводимость ряда полимеров соизмерима с проводимостью металла. Примером таких эмалей является ХС-928, АК-562, ХС-5132. Эмали наносят в два слоя, так чтобы общая толщина пленки составляла 100—170 мкм, [c.59]


    На термическую стабильность клеев существенное влияние оказывает природа наполнителя и подложки. При контакте с медью, нержавеющей сталью, никелем, магнием, цинком деструкция протекает с большей скоростью, чем при контакте с алюминием и кремнием. Кроме того, введение в состав клея алюминиевого порошка способствует также образованию менее жестких и менее хрупких соединений. В результате повышается прочность и стабильность соединений при повышенных температурах [6, с. 432]  [c.141]

    Как было показано в гл. 16, растворение и рост алмаза в растворе-расплаве металлов в изучавшихся условиях лимитируются процессом переноса углерода, который может осуществляться путем термо- или концентрационной диффузии. С целью изменения механизма, лимитирующего скорость роста кристаллов алмаза, в качестве источника углерода использовались графит, содержащий цирконий (массовая доля 25 %), а также прессованная смесь порошков синтетического алмаза и никеля (в соотношении 3 2) с размером частиц (1—4)-10 м. В последнем случае графитовый нагреватель камеры с горизонтально расположенным реакционным объемом изолировался танталовой трубкой с толщиной стенки 3-10 м. Предполагалось, что указанные композиционные углесодержащие материалы за счет меньшей площади контакта с углеродом, присутствия тугоплавкого металла-наполнителя и т. д. обеспечат снижение интенсив-388 [c.388]

    Контроль акустических свойств композиционных материалов на основе алюминиевой матрицы. Одними из перспективных являются материалы, получаемые методом порошковой металлургии из дисперсных порошков пластичного металла (алюминия, титана или никеля) и твердой керамики (окиси алюминия, карбида кремния и др.), выполняющей роль армирующего компонента. Эти порошки смешивают и прессуют в формах в защитной атмосфере при давлении порядка 40 МПа и температуре 590. .. 600 °С. Сочетание пластичности металлической матрицы с твердостью и жесткостью армирующего керамического наполнителя придает материалу прочность и износостойкость. [c.797]

    Для определения трифторида хлора используют метод газожидкостной хроматографии [277, 412, 529]. В качестве наполнителей газовых колонок из никеля (длина 2 и диаметр 6 см) применяют порошкообразный тефлон, пропитанный [c.138]

    Значительный интерес представляют металлонаполненные полимеры [57] (металлополимеры), где наполнителями служат порошкообразные металлы или металлические волокна (алюминий, никель, сталь, олово, кадмий, бериллий, бор, вольфрам, титан, лакированные железо и медь, магний н т. д.). Такие металлополимеры отличаются высокой прочностью (особенно в случае применения волокон), термостойкостью, тепло- и электропроводностью. Прочность в некоторых случаях обусловлена химическим взаимодействием полимера с металлом (образование комплексов за счет я-электронов двойных связей, реакция карбоксильных групп с окислами на поверхности металла и т. д.) наряду с физическим взаимодействием. Некоторые полимеры этого типа вследствие своей дешевизны и доступности заменяют цветные и драгоценные металлы в производстве вкладышей подшипников, изделий с высокой теплопроводностью и низким коэффициентом термического расширения, другие применяются в радиотехнике, для защиты от радиации (свинцовый наполнитель), при изготовлении магнитных лент, каталитических систем (наполнитель — платина, палладий, родий, иридий) и т. д. [c.475]

    Второй прием заключается во введении в полимерную матрицу электропроводящих наполнителей. Ими могут служить как металлы, так и их соединения (серебро, никель, медь). Требования к таким наполнителям оптимальная дисперсность и отсутствие оксидной пленки на поверхности частиц. [c.28]

    Наполнителем служит посеребреный порошок никеля (100 масс, ч.), отвердителем —полиамид Л-20 (10,7 масс. ч.). [c.56]

    Из гомологов ацетилена легче реагируют с водородом те, которые имею- тройную связь на конце цепи. Соединения с тройной связью в серодиНе цепи гидрируются медленнее, и в этом случае первая и вторая стадия разделены более четко, чем в случае ацетилена, ч При катализе никелем и особенно медью и при недостатке водорода из ацетилена получаются другие продукты, представляющие собой смеси его частично гидрированных полимеров. На медном контакте образуется твердое полимерное вещество —/сг//гр< н. Он применяется в качестве наполнителя при изготовлении различ-ных материалов. [c.499]

    СВЧ Мм применяют в радиоэлектронике, для изготовления волноводов, фазовращателей, преобразователей частоты, модутяторов, усилителей и т п Специфич требованиями к М м для СВЧ диапазона являются высокая чувствительность к управляющему магн полю, высокое уд электрич сопротивление, малые электромагн потери, высокая т-ра Кюри Наиб распространены никелевые, никель-медно-марганцевые ферриты-шпинели, иттриевый феррит-гранат, легированный РЗЭ Применяют металлич сплавы Fe-NI, Ре-А1, Ре А1 Сг Их используют гл обр для создания поглотителей кющности в разл изделиях СВЧ техники Композиционные СВЧ М м используют для создания экранов для защиты от СВЧ полей Металлич наполнителями являются Ре, Со, N1, сплавы сендаст, связующими - разл полимерные смолы и эластомеры Жидкие М м, или магн жидкости, представляют соЬой однородную взвесь мелких (10 -10" мкм) ферромагн частиц в воде, керосине, веретенном масле, фтор-углеводородах, сложных эфирах, жидких металлах Магн жидкости применяют для визуализации структуры постоянных магн полей и доменной структуры ферромагнетиков, 1243 [c.626]


    В качестве полупроводников могут быть использованы диэлектрики, наполненные токопроводящими наполнителями ме-d 1ЛИЧССКИМН порошками, графитом, техническим углеродом В качестве металлических наполнителей используют серебро, никель и другие металлы, не подвергающиеся окислению и не вызывающие химического разрушения полимеров Механизм электропроводимости наполненных систем (полупроводников и диэлектриков) более близок к туннельному, хотя не исключается возможность эмиссии электронов от частицы к частице. Туннельное сопротивление определяется толщиной прослойки полимера, которая зависит от содержания и размера частиц, их распределения и других факторов С уменьшением толщины прослойки сопротивление снижается. Его значение зависит также от диэлектрической проницаемости полимера, разделяющего частицы прн уменьшении проницаемости оно снижается В об- ia TH слабых полей сопротивление практически не завнсит от напряження, а при высоких значениях напряжения сопротипле-ние уменьшается [c.386]

    Электропроводные полимерные пленки характеризуются удельным объемным электрическим сопротивлением не более 10 Ом см. Существует два вида электропроводных пленок гомопленки (из одного полимера), обладающие полупроводниковыми свойствами, и гетеропленки (из полимеров с различными токопроводящими наполнителями), содержащие сажу, графит, порошки никеля, меди, серебра и других металлов. [c.77]

    Существенные успехи связаны с работами Лагоу и сотрудников, предложивших "криогенный" реактор [4]. Реактор представляет собой цилиндрическую вертикальную колонну, стенки которой выполнены из никеля, заполненную инертным наполнителем в виде медных или никелевых стружек, отводящих тепло и увеличивающих поверхность контакта реагентов [5]. В нем предусмотрены четыре зоны нагрева (от -78 до О °С) и ввод фтора в каждую из зон, что позволяет по мере накопления атомов фтора в молекуле и тем самым повышения термической устойчивости субстрата поднимать температуру реакции и увеличивать концентрацию подаваемого фтора. Таким путем достигается глубина фторирования. Главный недостаток этого реактора - малая производительность, поскольку субстрат [c.216]

    В качестве наполнителя используют порошок металла, подвер гаемого пайке. Например, для пайки меди применяют припой ПГМ 65 состава 650а — ост. Си, для пайки никеля — припой ПГН 54 состава 54 Оа — ост. Ni. Указанные припои применяют также для присоединения к золоту и серебру [10]. [c.28]

    Выполнение анализа. Навеску анализируемого поли-мера (3—7 мг), взвешенную с погрешностью не более 0,00002 г, помещают в кварцевый стаканчик 10, засыпают на 4 объема оксидом никеля и помещают в трубку для сожжения 11 открытым концом в сторону наполнителя (см. рис. И). Трубку для сожжения закрывают пробкой, отсоединяют от установки микроазотометр 5, открывают кран 13 и пропускают через трубку диоксид углерода в течение 5 мин. Далее присоединяют к установке микроазотометр, открывают кран 5 и продолжают пропускать диоксид углерода в течение 2—3 мин. Кран 5 закрывают, наполняют микроазотометр раствором гидроксида калия поднятием уравнительной груши 1 настолько, чтобы раствор поднялся в воронку, и закрывают кран 4, а грушу кладут на стол. Затем осторожно открывают кран 5 и пропускают диоксид углерода в азотометр. Микропузырьки должны очень медленно подниматься вдоль стенок калиброванной части азотометра. Если нет микропузырьков, то закрывают кран 5, спускают раствор КОН в грушу, открывая кран 4, полностью открывают кран 5 и еще раз продувают всю систему диоксидом углерода в течение 2—3 мин. После полного вытеснения воздуха диоксидом углерода закрывают кран 13, полностью открывают кран 5 и надвигают предварительно нагретые электропечи на трубку 11 (550— 650 на постоянном наполнении и 950—1000 — для сожжения), причем электропечь 9 ставят на расстоянии примерно [c.67]

    Навеску анализируемого вещества 10—15 мг берут в кварце вой пробирке, засыпают окисью никеля на 3/4 объема и помещаю в трубку для сожжения открытым концом в сторону наполнител [c.136]

    Электрод К 277 изготовлен с порообразующим наполнителем и скелетом ип карбо 1иль-ного никеля, а электроды № 297 и 316 —из серебряного сплава Репея, содержащего цинк, с опорным скелетом из никелевого порошка Ь. [c.364]

    Чтобы избежать бесполезного проскока пузырьков газа в электролит через слишком крупные поры, мы по примеру Бэкона делали электроды двухслойными. Тонкопористый запорный слой состоит при этом либо из одного карбонильного никеля, либо в последний вводится тонкозернистый порошок сплава Ренея, из которого при активации образуется серебро Ренея грубопористый рабочий слой также изготавливается из порошков карбонильного никеля и сплава Ренея. Пористость этого слоя регулировалась размером частиц сплава и добавкой порошка хлористого калия в качестве наполнителя. Этот наполнитель после горячего прессования легко растворялся. [c.377]

    Высокотемпературный клей получают, вводя в АХФС диоксид циркония (огнеупорность 1500—2000 °С), но такие клеи имеют при 600 °С значительную усадку. Если в АХФС вводить также порошки металлов (железо, никель, хром), то при отношении связка/наполнитель 1 1 (объемная доля металла — 40% от 2гОг) удается получить высококачественную клеевую композицию (высокотемпературную), прогрев ее до 250 °С. Адгезионные характеристики таких композиций приведены в табл. 24 [108, с. 18]. [c.120]

    В качестве высокотемпературных клеев используют фосфатные вяжущие. В случае покрытий по металлу наполнителями служат порошки металлов (для регулирования КТР) — меди, бронзы, никеля, хрома, нержавеющей стали 1Х12Н2 или Х23Н18 (до 40— 50%). Лучшие результаты получены при введении стали. Такие фосфатно-металлические клеи применяют при креплении, например, слюдокерамики к титану. Ниже [c.128]

    Можно повысить также пористость, введя в порошкообразную смесь для ДСК-электродов наполнитель. Это может быть, например, тонкий порошок растворимых в воде веществ, которые при горячем прессовании в интервале температур, от 300 до 500° С не реагировали бы с порошками сплава Ренея и карбонильного никеля. Можно использовать и металлический порошок, если выполняется указанное выше условие и если его можно полностью растворить из электрода, не ухудшая при этом последнего. Здесь подразумевается, например, алюминиевый порошок, который при обработке электрода [c.363]

    С учетом шкалы, приведенной на рис. 59, среди полимерных материалов можно обнаружить не только традиционные изоляторы (ПЭ, ПС, ПА, ФП, АП, ЭП), но и проводящие материалы, у которых, правда, проводимость достигается использованием вы-сокопроводящих наполнителей (серебро, раскисленная медь, никель). [c.156]

    Химическое осаждение металлов стало весьма популярным и в отношении пластмассовых изделий. Данный метод но своей химической природе схож с нанесением зеркального покрытия на стекло (используется технология химического восстановления солей металлов, таких как никель). Здесь необходима лишь стадия щелочной очистки. Очиститель должен подбираться с учетом природы загрязнений, которые нужно удалить, так как пластмасса обычно нейтральна к действию водных очистителей. Загрязнения чаще всего легкие, так что действие высоких температур не требуется и щелочность поддерживается на невысоком уровне. Вполне подходят слабо-ненящи-еся неионогенные ПАВ с фосфатными наполнителями. [c.113]

    Наполнителем служит посеребреный порошок никеля (100 масс. ч.). отаердителем —по [c.80]

    Другой причиной синергического эффекта является образование маслорастворимыми ПАВ так называемых смешанных мицелл с включением в состав мицелл молекул поляризующих или деполяризующих соединений [18]. Роль таких добавок могут выполнять спирты, кетоны, простые и сложные эфиры, амины, жирные кислоты разного строения, уксусная кислота, а также твердые частички — наполнители-сегнетоэлектрики (нитрит натрия), ферромагнетики (микрочастички железа, никеля, кобальта), наполнители (микрокальцит, микродоломит и пр.) [18]. Регулируя объемные свойства маслорастворимых ПАВ, число их агрегации, критическую концентрацию мицеллообразования за счет промежуточных поляризующих соединений (вода, легкие спирты и эфиры, фенолы) и поляризующих соединений (указанных выше добавок), можно повышать до оптимальных значений поверхностную активность комбинированных продуктов, их диэлектрическую проницаемость и электрическую проводимость и добиваться улучшения поверхностных, в частности защитных свойств. Еще более ощутимые результаты получаются, когда наряду с промежуточными поляризующими и поляризующими соединениями используется внешняя поляризация мощными акустическими, электрическими, магнитными или электромагнитными полями — процесс Электромаг [18, 120—122]. [c.137]

    Для удовлетворения указанных требований к объемным свойствам маслорастворимых ингибиторов выбирают те вещества, которые способны к поляризации системы. Это — микрокальцит (доломит), порошки металлов или их оксидов, дисульфид молибдена, графит, нитрит натрия (сегнетоэлектрик). Особенно сильно поляризуют ПИНС (и другие смазочные материалы) ферромагнитные материалы — мелкодисперсные частицы железа, никеля или кобальта. Получение тонких, модифицированных дисперсий наполнителей обеспечивается разными технологическими приемами. Используют струйные мельницы (в том числе во встречных потоках), коллоидные мельницы разных модификаций, эффективные магнитные реакторы-диспергаторы с вихревым слоем ферромагнитных частиц (АВС-100, АВС-150) ультразвуковые и магнитострикционные диспергаторы, дезинтеграторы, получившие значительное распространение в последнее время [117—122]. Тонкие дисперсии порошков металлов получают также электроискровым и электрохимическими методами 118], дисперсии карбонатов металлов — методом карбонатации 17, 18]. Для модификации поверхности наполнителей используют самые разнообразные гомогенизаторы — отечественные ультразвуковые типа АГС-6, ГАРТ-Пр, зарубежные типа Фирма и Корума и пр. [c.160]

    В табл. 21 показано влияние содержания микрокальцита и других наполнителей на свойства продукта НГ-216 [34]. Наполнители измельчали методом ультразвукового диспергирования и отбирали фракции не более 5 мкм. Судя по эффекту последействия ингибиторов (ЭПИ, см. табл. 21), микрокальцит и другие наполнители улучшают хемосорбцию ингибитора на металле, что связано, очевидно, с ростом полярности системы. Почти все наполнители улучшают стойкость покрытия к дождеванию, защитную эффективность в агрессивных средах особенно значительным поляризующим эффектом обладает порошок никеля и нитрит натрия. [c.163]


Смотреть страницы где упоминается термин Никель наполнитель : [c.99]    [c.7]    [c.314]    [c.218]    [c.363]    [c.119]    [c.363]    [c.99]    [c.101]    [c.119]    [c.304]    [c.503]   
Справочное руководство по эпоксидным смолам (1973) -- [ c.184 ]




ПОИСК





Смотрите так же термины и статьи:

Наполнители



© 2025 chem21.info Реклама на сайте