Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температурные хрупкости

    Температурная зависимость предела вынужденной эластичности. Температура хрупкости. Температурная зависимость Ов прн постоянной скорости деформирования представлена на рис. V. 19. Прямая Ов = /(Т) пересекается с осью абсцисс в точке, соответствующей температуре стеклования полимера. При температуре [c.157]

    Наряду с температурой стеклования практически важной температурной характеристикой полимеров является также температура хрупкости (Т р). Так условно называют температуру, ниже которой полимер проявляет хрупкость (см. р. 589). Температура хрупкости, если ее определять ири действии на полимер в статических условиях, несколько ниже температуры стеклования. [c.587]


    Авторы [42] предлагают утилизировать нефтяные отходы, производя на их основе гидроизоляционный материал, состоящий из нефтешлама 50-65% и наполнителя (глина фракции 0,1-1,0 мм или керамзитовая пыль), который обладает повышенными водозащитными свойствами и температурной хрупкостью. В работе рассматривается нефтешлам Краснодарского НПЗ, представляющий собой смесь нефти, нефтепродуктов и продуктов перегонки нефти, собранную при очистке сточных технологических и канализационных вод  [c.52]

    В связи с расширением областей применения парафинов, церезинов и разработкой на их основе восковых композиций большое значение приобретают физико-механические свойства этих продуктов, такие как твердость, прочность, пластичность, адгезия, усадка и др. Прочностные и пластичные свойства твердых углеводородов могут быть оценены по остаточному напряжению сдвига, температуре хрупкости и показателю пластичности. Результаты работ [16, 22] показали, что физико-механические свойства твердых углеводородов обусловлены их химическим составом, структурой молекул отдельных групп компонентов и связанной с ней плотностью упаковки кристаллов твердых углеводородов, а также фазовым состоянием вещества. Сопоставление физико-механических свойств со структурой твердых углеводородов проведено [16] на молекулярном уровне с использованием температурных зависимостей показателей преломления и ИК-спектров в области 700—1700 см-. На рис. 33 и 34 приведены результаты исследования грозненского парафина, состоящего из парафиновых углеводородов нормального строения, и углеводородов церезина 80 , не образующих комплекс с карбамидом и содержащих разветвленные и циклические структуры. [c.126]

    На рефрактометрических кривых отмечаются монотонное возрастание показателя преломления и отсутствие разрыва этой кривой, что отвечает аморфной структуре вещества. Появление второго показателя преломления и рост двупреломления свидетельствуют об одновременном существовании кристаллической и аморфной структур. Таким образом, наибольшими прочностными свойствами обладают продукты с повышенным содержанием парафиновых углеводородов нормального строения. Присутствие в составе твердых углеводородов циклических и разветвленных структур приводит к повышению пластичности и снижению температуры хрупкости продукта, причем при среднем содержании числа колец в молекуле более 1,5 продукт является пластичным в широкой области температур. Температурный диапазон применения твердых углеводородов колеблется от минусовых температур до их температуры плавления. В зависимости от температуры эксплуатации продукт находится в определенном фазовом состоянии с соответствующими прочностными или пластичными свойствами. [c.128]


    Как видно из рис. 118, применимость металлов для изготовления аппаратов и труб зависит от температурного интервала эксплуатации этих изделий. При пониженных температурах механические свойства металлов (хрупкость, усталостная прочность и др.) изменяются. Коррозионный износ металлов при этом также усиливается, хотя и в меньшей степени. [c.202]

    Далее, сам по себе полистирол — твердый, прозрачный, легко окрашиваемый материал, который отличается большой хрупкостью и малой температурной устойчивостью. Изделия из него бьются примерно так же, как стеклянные, а если вы, к примеру, нальете в чашку из полистирола кипяток, она непременно покоробится, станет непригодной для дальнейшего использования (температура размягчения полистирола 82—95 °С). [c.125]

    Техническими характеристиками битума служат, в частности, его температура размягчения, температура хрупкости, достигаемая при понижении температуры, температура вспышки, характеризующая степень огнеопасности битума, плотность, вязкость, пластичность, глубина проникновения иглы, растяжимость нити, прилипание к поверхности металла или камня и др. Методы определения их применяются большей частью эмпирические, условные. Остановимся для примера лишь на определении температуры размягчения. Битумы ие обладают резкой температурной границей между твердым и жидким состояниями. Твердый битум при повышении температуры постепенно размягчается и далее переходит в вязкотекучее состояние и, наконец, в более подвижную жидкость. Такой переход охватывает интервал в несколько десятков градусов. [c.209]

    От молекулярной массы зависят такие ва/кные характеристики полимеров, как температуры текучести, стеклования и хрупкости, определяющие температурные интервалы переработки и эксплуатации полимерных материалов. В зависимости от различных внешних условий (температуры, наличия пластифицирующих сред, величины и скорости приложения нагрузки и т. п.) [c.48]

    К наиболее приемлемым формулировкам понятия неорганического стекла относятся две — комиссии по терминологии АН СССР (1939) и американского общества испытания материалов США (1950). Определение комиссии АН СССР Стеклом называются все аморфные тела, получаемые путем переохлаждения расплава независимо от химического состава и температурной области затвердевания и обладающие в результате постепенного увеличения вязкости механическими свойствами твердых тел процесс перехода из жидкого состояния в стеклообразное должен быть обязательно обратимым . Определение американского общества испытания материалов Стекло—это неорганический продукт плавления, охлажденный до твердого состояния без кристаллизации. Стеклу присущи такие характерные свойства, как твердость, хрупкость и раковистый излом. Оно может быть бесцветно или окрашено, прозрачно или непрозрачно . [c.188]

    Температура хрупкости соответствует точке пересечения температурных зависимостей Ов и Оп. Ниже температуры хрупкости (Тп < <Ув, и образец хрупко разрушается прежде, чем достигается значение Ов (рис. V. 19). [c.158]

    Температура хрупкости, как и Гс, зависит от молекулярной массы (рис. 10.9). При малой молекулярной массе, когда мы имеем дело с олигомером, значения Гс и Тхр совпадают. Когда молекулы становятся достаточно длинными и, следовательно, появляется гибкость, Гс растет быстрее, чем Г р, и возникает температурный интервал вынужденной эластичности (Гс— Тхр). При дальнейшем росте молекулярной массы Г р даже несколько понижается, что приводит к увеличению интервала вынужденной эластичности для высокомолекулярных полимеров. [c.154]

    Для ряда полимеров увеличение молекулярной массы недостаточно для обеспечения нужной протяженности температурных интервалов эластичности и вынужденной эластичности (отсутствия хрупкости). Прибегают к другим путям расширения интервалов, тем более, что значительный рост молекулярной массы существенно затрудняет переработку полимеров. [c.154]

    Эластомеры для расширения температурного интервала высокоэластичности вулканизуют. Пластмассы для снижения температуры хрупкости модифицируют. [c.154]

    При отпуске сохраняется а-кристаллическая структура закаленного железа, придающая металлу высокую твердость и прочность, хотя углерод, находившийся в закаленной неотпущенной стали в виде перенасыщенного твердого раствора, выделяется в форме собственных кристаллов. В зависимости от температурного режима закалки и отпуска размеры кристаллов а-Ре и углерода оказываются различными, что влияет на прочность и хрупкость получаемого изделия. [c.117]

    Кристаллический полистирол не растворим в общераспространенных растворителях при обычной температуре, но полностью растворяется в кипящем бензоле, толуоле, ксилоле, метилэтилкетоне. Растворы стабильны при комнатной телшературе. Плотность кристаллического полистирола 1,08 г/см . Свойства кристаллического полистирола мало изменяются до 200°, при 220° происходят плавление кристаллов и переход полимера в вязкотекучее состояние. Хрупкость кристаллического стирола выше хрупкости аморфного, но ее можно несколько снизить ориентацией образца или введением пластификаторов [111]. Введение пластификатора в аморфный или кристаллический полистирол резко снижает температуры их стеклования и плавления, уменьшая температурный интервал применения полистирола. [c.806]


    Исходя нз теории упругости полимеров, В. А. Каргиным и Г. Л. Слонимским [191] разработана теория трех деформационных состояний стеклообразного, высокоэластичного и вязкотекучего. Температурные интервалы этих состояний зависят от размеров ССЕ, интенсивности внешнего воздействия (скорости нагрева) и других факторов. С целью удобства сопоставлении механической прочности различных НДС, находящихся ниже температуры текучести, предложены стандартные методы, с помощью которых определяют интервал хрупкости, дуктильности и пенетрацию. Поверхностное натяжение является одной из определяющих характеристик для форлМЫ ССЕ тех НДС, в которых обе фазы представляют собой жидкости или жидкость и газ. Поверхностное натяжение веществ находится в зависимости от сил ММВ в них. Поверхностное натяжение жидких тел 1а границе с воздухом сопоставимо с силами ММВ в объеме. Поэтому жидкость под влиянием поверхностного натяжения стремится принять такую форму, при которой ее поверхность при данном объеме будет наименьшей, т. е. сферической. Несмотря на более [c.146]

    Пластификаторы, относящиеся к третьей группе, вводятся только в жесткоцепные полимеры для снижения пх хрупкости, т. е. эти пластификаторы расширяют температурный интервал Тс — Тхр за счет снижения Тхр- [c.263]

    Увеличение- Кр.с масляного компонента битума и уменьшение отношения асфальтены смолы ослабляют прочность структуры битумной системы. Это происходит в результате большего диспергирования асфальтеновых мицелл в масляных фракциях, обладающих большей растворяющей способностью. В результате битум переходит в состояние золя и теряет вязкостно-эластичные свойства, что приводит к понижению температуры размягчения и пенетрации при 0°С, увеличению растяжимости и уменьшению индекса пенетрации, т. е. к увеличению крутизны вязкостно-температурной кривой, повышению температуры хрупкости (значение последней проходит через минимум). [c.40]

    Растяжимость битумов при 25 °G имеет максимальное значение, отвечающее их переходу от состояния ньютоновской жидкости к структурированной. Чем больше битум отклоняется от ньютоновского течения, тем меньше его растяжимость при 25 °С, но достаточно высока при 0°С [214]. В связи с этим целесообразно [409] растяжимость битума определять при температуре ниже 25 °С, а именно при температуре хрупкости плюс 1/3 температурного интервала пластичности. Битум должен обладать повышенной растяжимостью при низких температурах (О и 15 °С) и умеренной при 25 С. [c.55]

    Пластифицирование битумов способствует увеличению расстояния между частицами дисперсной фазы, уменьшению размеров крупных агрегатов и увеличению их числа, а также более равномерному распределению коллоидно-дисперсной фазы системы. Введенные в битум пластификаторы оказывают влияние на прочность, эластичность, хрупкость и теплостойкость битума, на расширение температурного интервала эластично-пластичного состояния в пределах требуемой текучести и на другие свойства битума. В колонном аппарате в отличие от куба-окислителя периодического действия протекает [c.230]

    Далее, по мере изменения химического состава битума при старении нарастает его хрупкость, что связано с ухудшением деформативной способности асфальтобетона. Появляются трещины, число которых с каждым годом увеличивается. Вначале образуются поперечные трещины, что характерно для температурных растягивающих напряжений, затем (по мере ускорения процессов старения битума) эти трещины располагаются в хаотическом порядке, разрушая монолитное покрытие. [c.174]

    Роль сварочных напряжений усиливается при увеличении хрупкости металлов и степени концентрации напряжений. Когда величина напряжений превышает предел прочности, например в температурном интервале хрупкости, возникают горячие тре- [c.206]

    Точки плавления и затвердевания последних существенно ниже тех же точек для сталей и влияют на границы температурного интервала хрупкости или потери пластичности при высоких температурах. Так, температура плавления для сплавов следующая 1189° С для РеЗ, 644° С для №8, 988° С для Ре—РеЗ. При повышении скоростей охлаждения в процессе первичной кристаллизации увеличивается склонность к образованию горячих трещин, что характерно для углового шва и первого слоя многослойного шва. Углерод, кремний, сера,- фосфор и водород в стали повышают склонность к образованию горячих трещин. [c.257]

    Из диаграммы видно, что при температуре синеломкости в металле повышается склонность к хрупкости. Это учитывается в регламентах различных отраслей промышленности, далеко не единых в отношении температурного режима проковки. [c.275]

    Температурная хрупкость в °С. . Адгезия со сталью, покрытой хлор-наиритовым грунтом, в кГ см Истираемость в см 1квт.-ч. ... Набухание в юде за 30 суток при [c.194]

    Нагрев вызывает температур ную хрупкость полимера. Специфическое влияние температуры вытекает из качественных и количественных предпосылок флуктуационной теории прочности. Эти вопросы обстоятельно освещены выше. Их уместно лишь несколько дополнить конкретными наблюдениями. Например, Хейсс и Ланза исследовали влияние поверхностно-активной среды, температуры и окисления. Во всех случаях они использовали методы испытаний при постоянной деформации методику Белл-Телефон и одноосное растяжение образца. В этой серии опытов применяли материал с удельным весом 0,96 Г1см и индексами расплава 0,54 и 0,60 Г/Ю мин. В воде и этиленгликоле логарифм долговечности оказался пропорциональным обратной температуре, что соответствует закону Аррениуса. Было установлено, что температурная хрупкость. не зависит от вида напряженного состояния. Опыты проводили при различных двухосных деформациях от 4,7 до 25,2% в очищенном азоте при 70 °С. Параллельно исследовали долговечность при линейном растяжении от 6 до 50% . В обоих случаях при деформациях ниже 4% долговечность увеличивалась неограниченно (см. рис. 91), а выше 15% — неиз(менно составляла 20 ч. [c.209]

    Факторы, способствутощие образованию горячих грещин. Наличие температурно-временного интервала хрупкости является первой причиной образования горячих трещин. Температурно-временной интервал хрупкости обусловливается образованием жидких и полужидких прослоек, нарушающих мегаллическую сплошность сварного шва. Эти прослойки образуются из-за наличия легкоплавких, сернисть(х соединений (сульфидов) Ре8 с температурой плавления 1189 С и N 8 с тем-перату]зой плавления 810 С. В пиковый момент развития сварочных напряжений по этим жидким прослойкам происходит сдвиг металла, перерастающего в хрупкие трещины. [c.167]

    Винипласт. Это термоплавкая пластмасса, которую выпускают в виде труб, стержней и листов толщиной до 20 мм. Он стоек к воздействию многих корродирующих сред, за исключением сильных окислителей и концентрированной серной кислоты. Температура его применения от —10 до +60°С. Механическая прочность невелика. Он хорошо поддается обработке — легко гнется и штампуется в горячем состоянии, обрабатывается на станках. Отдельные части соединяют склейкой или сваривают винипласто-вым прутком. Из винипласта изготовляют небольшие аппараты, электролизные ванны, трубопроводы, воздуховоды, отдельные детали аппаратов. Его недостатки—низкая механическая прочность, хрупкость и малые температурные пределы применения. [c.23]

    Механические испытания. На образцах, вырезанных изразрушившейся детали, найти стандартные механические свойства металла. На образцах с трещиной найти характеристики, оценивающие сопротивление металла распространению трещины (например, Кю при статическом нагружении и ату - при ударном). Построить температурные зависимости этих характеристик и установить критические температуры хрупкости. Предусмотреть на образцах с трещиной различное ее расположение - такое, чтобы трещина распространялась как вдоль направления излома, так и в обе стороны поперек. [c.234]

    В связи с переходом НДС из свободно-дисиерсиого в связно-дисперсное состояние в виде студня или геля существенно улучшаются их етруктурно-механические свойства и устойчивость. Начало перехода в связно-дисиерсное состояние можно оценить для высококонцеитрированиых растворов высокомолекулярных соединений (пеков, битумов, асфальтенов) температурой размягчения (температура текучести — 7т) В промышленной практике структурно-механические свойства битумов, асфальтенов и др. принято оценивать температурным интервалом хрупкости, дуктильности и пенетрацией. [c.146]

    Пластификация битумных мастик расширяет температурный интервал эластично-пластичного состояния, понижает температуру хрупкости. Увеличение количества дисперсной среды путем введения нефтяных масел снижает теплостойкость масти) при некотором повышении пластичности при низких температурах. Использование в качестве пластификатора мастик некотор 1Х полимеров (полидиена и др.), имеющих более низкую температу11у, чем битум, позволяет получать мастики с повышенной пластичностью, с более низкой температурой хрупкости и в то же время с повышенной эластичностью и термической устойчивостью. Так, введение в битуморезиновую мастику (BH-IV (93%) + резина (7%)] золеного масла изменяет вязкость ее при - -40, + 60,+ 80° С соответственно в 7,5 13 8,5 раза, а введение полидиена (5%) — только в 1,4 2,6 и 2,5 раза при увеличении пластичности при отрицательной температуре. Битумо-нолидиеновая мастика течет как ньютоновская жидкость при температуре свыше + 240° С, битумо-минеральная и битумо-резиновая— при +180° С (соответственно вязкости 1 Н-с/м и 12 Н-с/м ). [c.158]

    Целью модификации битумов полимерами является получение композиционного материала (компаунда) с преобладающими свойствами полимера, такими, как высокая прочность, широкий интервал рабочих температур - , высокая химическая стойкость, хорошая переносимость больших пластических деформаций, стойкость к действию климатических факторов и т.п.Температурный диапазон работоспособности дорожных битумов (алгебраическая сумма температуры размягчения по КиШ и температуры хрупкости по Фраасу) составляет обычно 50-65°, что обусловлено главным образом природой нефти, т.е. низкотемпературными свойствами ее низкомолекулярных компонентов и групповым химическим составом тяжелых остатков (сырья для производства битумов).Битумы малоэластичны, т.к. их пространственная структура, создаваемая за счет коагуляционных контактов между частицами дисперсной фазы (асфальтеновых ассоциатов), обусловливает минимальные по сравнению с недисперсными системами величины обратимых деформаций . В то же время условия эксплуатации дорожных, мостовых, аэродромных асфальтобетонных покрытий диктуют необходимость обеспечить трещиностойкость при температурах до -50°С и ниже, теплостойкость до 60-70°С и весьма существенно увеличить долю обратимых деформаций (эластичность). Для решения этих задач исследователи пошли по пути изменения структуры битума за счет создания в нем дополнительной эластичной структурной сетки полимера способного распределяться в битуме на молекулярном уровне. [c.51]

    К недостаткам полидиенацеталей следует отнести их высокую хрупкость (удельная ударная вязкость 2,9—5,8 кг см1см ) и иизкий температурный предел возникновения текучести под нагрузкой (полимер начинает изменять форму в нагруженном состоянии уже при 45—50°). [c.294]

    Полимеры в стеклообразном состоянии обладают прочностью твердых тел если прилолсить значительную силу (при сжатии, растял ении, изгибе), они деформируются незначительно. Это объясняется тем, что в стеклообразном состоянии молекулы связаны наиболее прочно и наименее гибки. В сравнении с низко-молекулярными стеклами полимерные стекла могут несколько изменять свою форму под действием деформирующих усилий. Объясняется это тем, что часть звеньев сохраняет подвил<ность при наличии прочной связи на многих других участках макромолекулы. Низкомолекулярные стекла разрушаются без деформации или претерпевая едва заметную деформацию. В этом легко убедиться, если сравнить свойства органического стекла (поли-метилметакрилата) с обыкновенным (силикатным) стеклом. Чем нил<е температура в области стеклообразного состояния, тем меньшее число звеньев обладает подвилсностью, и при определенной температуре, называемой температурой хрупкости, полимерные стекла разрушаются без деформации, подобно низкомолекулярным стеклам. Более хрупки в равных температурных условиях стеклообразные полимеры, построенные из глобулярных частиц. Глобулярные молекулы теряют подвижность в целом, подобно молекулам низкомолекулярных соединений, и полимеры глобулярного строения раскалываются по линии раздела глобулярных частиц. Весьма валено поэтому в процессе переработки полимеров преобразовать глобулярную структуру в фибриллярную, что удается, например, при переработке поливинилхлорида. [c.17]

    Температуру хрупкости полимера можно определить графически по температурной зависимости хрупкой прочности и предела вы-1 ужденной эластичности (рцс. 91). Хрупкая прочтюсть материалов [c.213]

    Для высокомолекулярных стекол температуры хрупкости и стекловапия, определенные при одинаковых скоростях деформации, не совпадают (первая всегда лежит ниже второй) ь Разность Тс—Тлр Определяет температурный интервал вынужденной эластичности, [c.214]


Смотреть страницы где упоминается термин Температурные хрупкости: [c.115]    [c.32]    [c.235]    [c.235]    [c.132]    [c.49]    [c.190]    [c.214]    [c.216]    [c.232]   
Физико-химические основы производства искусственных и синтетических волокон (1972) -- [ c.22 , c.23 , c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Определение температурного предела хрупкости резин

Практическая работа 27. Определение температурного предела хрупкости резин

Хрупкость



© 2025 chem21.info Реклама на сайте