Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо в магниевых сплавах

    Применение элементов подгруппы титана. Титан вдвое легче стали, а титановые сплавы в. 3 раза прочнее алюминиевых, в 5 раз прочнее магниевых сплавов и превосходят некоторые специальные стали, в то время как их плотность значительно меньше, чем последних. Поэтому титан и сплавы на его основе широко используются в авиа- и судостроении, космической технике. Кроме того, титан и цирконий используются как в качестве легирующих добавок к черным и цветным сплавам, так и в качестве основы конструкционных материалов, способных работать в экстремальных условиях. Для легирования сталей и модифицирования чугунов обычно используют ферротитан и ферроцирконий (сплавы с железом, содержащие 20—40% Ti или Zr). Добавка к стали уже 0,1% Ti способствует повышению ее твердости и эластичности. Такая сталь идет на изготовление рельсов, вагонных осей и т. п. Добавки циркония в таком же количестве резко повышают вязкость стали (броневые плиты). [c.244]


    Одна из характерных особенностей этилированных бензинов — это их способность оказывать корродирующее действие на металлы в присутствии воды. Галоидорганические соединения, используемые в качестве выносителей, реагируют с водой, образуя галоидоводородные кислоты. Такие кислоты корродируют оцинкованное железо, магниевые сплавы, в меньшей степени — алюминий и бронзу. Наибольшая коррозия металла обычно наблюдается на границе раздела бензинового слоя с водным. Металл, соприкасающийся только с водой или только с бензином, корродируется в меньшей степени. Вода, извлекая часть выносителя, нарушает соотношение между ТЭС и выносителем, что приводит к увеличению нагарообразования при использовании таких бензинов. Хранение этилированных бензинов на водяных подушках категорически запрещается. [c.170]

    Опыт 3. Магниевые сплавы. На поверхность образца нанести две капли 3%-ного раствора Fej(804)3. В случае магниевого сплава через 2—3 мин появляется желто-бурый осадок основной соли железа. Другие сплавы не взаимодействуют с этим реактивом. Уравнение реакции  [c.115]

    На поверхность образца наносят 2 капли раствора сульфата железа (III). В случае магниевого сплава через 2-3 мин появляется [c.120]

    Титрование с ксиленоловым оранжевым описано для определения алюминия в сталях [712], в титановых сплавах [1173], ферротитане [63], магниевых сплавах [429], алюминиевой бронзе [260], в сплавах никеля с алюминием [263], в бинарных сплавах алюминия с медью [345], с цирконием [434], железом [345], с титаном [665], в тройных сплавах с цирконием и никелем [295], в бокситах, нефелиновых рудах и концентратах [16, 71, 558, 877], каолине [147, 680], в различных минералах, рудах и горных породах [23, 71, 166, 229, [c.69]

    Иттрий может найти применение аналогично скандию. Введение его в железо-хромовые сплавы повышает стойкость к окислению добавка 1 % иттрия повышает температуру окисления с 1100 до 1370° С. Иттрий заметно упрочняет магниевые и алюминиевые сплавы. Возможно использование его в атомной технике, а также в авиации в качестве конструкционного материала. Он имеет малое сечение захвата тепловых нейтронов и является легким металлом. [c.70]

    Металлический титан и сплавы на его основе. Области применения титана и его сплавов как конструкционных материалов определяются комплексом свойств, выгодно отличающих их от сплавов железа, алюминия и магния. Для них характерны высокая коррозионная стойкость, жаропрочность (сохраняют механические характеристики до 430—450°), малая плотность и высокая прочность /По прочности они превосходят некоторые нержавеющие стали, алюминиевые сплавы (в 2—3 раза), магниевые сплавы (в 5 раз). Удельная прочность (прочность, отнесенная к массе) у них наивысшая среди технических материалов. Эти свойства отвечают современным требованиям машиностроения и выдвигают титан в ряд перспективных материалов для использования во всех отраслях промышленности (табл. 60). [c.242]


    При добавлении в магниевые сплавы сотых долей процента алюминия допустимое содержание железа в сплаве снижается до нескольких тысяч долей процента. В магниевых сплавах с 10% алюминия примеси железа недопустимы. [c.134]

    Магниевые сплавы. На чистую поверхность металла помещают каплю 3%-ного раствора Ре2(50.()з, подкисленного серной кислотой. Если имеют дело с магниевыми сплавами, то через 1 мин. начинается бурное вскипание и через 2—5 мин. появляется желто-бурый осадок основной соли железа. [c.128]

    Мухина 3. С. и Володарская Р. С. Методы анализа магниевых сплавов. [Определение кремния, алюминия, меди, марганца, цинка, железа, никеля]. Тр. (Всес. н.-и. ин-т авиац. м-лов ВИАМ ), 1949, 2, с. 21—25. 4869 [c.190]

    Особую заботу о контактной коррозии надо проявлять в тех случаях, когда конструкция содержит детали из магниевых сплавов. Обладая наиболее отрицательным потенциалом среди применяемых в технике материалов, магниевые сплавы в сочленениях являются, как правило, анодами и подвергаются разрушению. По данным работы [55], наблюдалась сильная коррозия магниевых сплавов в туманных камерах при контактировании их с углеродистыми и нержавеющими сталями, а также с оцинкованным железом и бронзой. [c.138]

    Как было отмечено, алюминий и его сплавы очень чувствительны к контактированию с другими металлами. Самыми опасными являются контакты с более положительными металлами — медью и медными сплавами. В ря.де условий вреден контакт с железом, сталью и коррозионно-стойкой сталью. Контакт с цинком и кадмием в условиях, когда алюминий находится в пассивном состоянии, безвреден и даже несколько защищает алюминий. Магний и магниевые сплавы, несмотря на то, что они имеют значительно более отрицательный потенциал, при контакте с алюминием оказываются также опасными, так как вследствие сильной катодной поляризации алюминия он может перейти в активное состояние под влиянием защелачивания среды (эффект катодной перезащиты алюминия). В результате опасных контактов происходит более существенное разрушение алюминия в электропроводных средах, содержащих ионы хлора. В атмосферных условиях при достаточной влажности отрицательное влияние контактов также может проявляться, хотя и будет распространяться только на поверхность алюминия, непосредственно прилегающую к контакту. [c.265]

    Для протекторов при защите подземных сооружений часто используют магний. Чистые металлы - магний, алюминий, цинк - не получили практического применения для изготовления протекторов, так как магний имеет сравнительно низкую токоотдачу, а алюминий и цинк склонны к пассивации. Введение добавок позволяет получить сплавы с более отрицательными, чем у основного металла, потенциалами, которые могут оставаться активными, равномерно разрушаться. В магниевые сплавы для протекторов вводят добавки алюминия, цинка и марганца. Алюминий улучшает литейные свойства сплава и повышает механические характеристики, но при этом немного снижается потенциал. Цинк облагораживает сплав и уменьшает вредное влияние таких примесей, как медь и никель, позволяя повышать их критическое содержание в сплаве. Марганец вводят в сплав для осаждения примесей железа. Кроме того, он повышает токоотдачу и делает более отрицательным потенциал протектора. Основные загрязняющие примеси в сплаве - железо, медь,, никель, кремний, увеличивающие самокоррозию протекторов и снижающие срок их службы. [c.158]

    Для изготовления протекторов используют сплавы на основе магния, цинка или алюминия — металлов, расположенных в электрохимическом ряду напряжений выше железа, т. е. имеющих более электроотрицательный потенциал. Лучший эффект в почвенных условиях имеют магниевые сплавы. Наиболее распространенные протекторы, выпускаемые промышленностью для защиты под- [c.242]

    Определение скаидия при помощи ксиленолового оранжевого проводят при рИ 1,5. В 5ти условиях не мешают нойы щелочноземельных элементов, лантана, празеодима, неодима, самария, церия (П1), иттрия, цинка, кадмия, алюминия, марганца, железа (И). Поэтому метод можно применять для фотометрического определения скандия в металлическом магнии и магниевых сплавах без отделения компонентов сплава. Мешают ионы циркония, тория, галлия и висмута, образующие с ксиленоловым оранжевым окрашенные соединения. Соединения железа (П1) и церия (IV) предварительно восстанавливают аскорбиновой кислотой. [c.373]

    При этом считается, что эксплуатация железа, стали, магниевых сплавов и неплакированных алюминиевых сплавов системы алюминий — медь без дополнительной защиты в коррозионно активных средах должна быть там, где это возможно, исключена даже в отсутствие контакта с металлами. Для этих случаев в табл. 34 введено обозначение (а). [c.176]

    Е его малорастворимых солях 4292 определение 3335, 4043. 40 б, 4300. 4321. 4697, 4700. 5597, 5777. 6350 в висмуте 4553, 5098 в железе 4121 в магниевых сплавах 3421 в меди и в медных сплавах 4015, 4708. 5335, 5336 в минералах 4708 [c.385]

    Даже у эффективных магниевых сплавов и при благоприятных условиях значения не превышают 0,55—0,65. Причиной большой доли собственной коррозии является выделение водорода, образующегося по катодной параллельной реакции согласно уравнению (7.56), или же развитие свободной коррозии частиц, отделенных от протектора при сильно трещиноватой его поверхности (см. раздел 7.1.1 [2—4, 19— 21]). Магниевые протекторы изготовляют в основном из сплавов. Содержание железа и никеля не должно превышать 0,003 %, так как при этом их свойства ухудшаются. Влияние меди не является однозначным. Верхним пределом ее содержания считается 0,02 %. При добавке марганца железо выпадает из расплава и при затвердевании становится безвредным ввиду образования кристаллов железа с оболочкой из марганца. Кроме того, марганец повышает токоотдачу (выход по току) в хлоридсодержащих средах. Содержание марганца должно быть не менее 0,15 %. Алюминий облегчает удаление вредного железа благодаря выпадению вместе с марганцем. Впрочем, чувствительность к повышенным содержаниям железа (более 0,003 %) в присутствии алюминия заметно повышается. При добавке цинка коррозионное разъедание становится более равномерным, к тому же снижается чувствительность к другим загрязнениям. Важнейшим магниевым протекторным сплавом является сплав А2 63, который удовлетворяет также и требованиям стандарта военного ведомства США М1Ь-А-21412 А [22]. [c.186]


    Такие металлы, как железо и 1щнк, процесс коррозии которых в Нейтральных средах протекает с катодным контролем, корродируют в щелях с меньшей скоростью, чем вне их. Магниевые сплавы и некоторые нержавеющие стали, корродирующие с анодным контролем, разрушаются в щелях интенсивнее, чем на открытой поверхности. Следовательно, для у1Леродистых сталей при коррозии под напряжением в нейтральных и слабокислых средах собственно щелевой эффект рост трещин ускоряет несущественно. [c.59]

    Еще в 30-х годах было обнаружено [152], что при уменьшении давления воздуха долговечность металлов возрастает. В вакууме долговечность алюминия по сравнению с воздухом при атмосферном давлении повышается в 5-10 раз [153]. При этом возрастает также предел выносливости. Аналогичные результаты получены на меди [154]. Долговечность железа повышается в вакууме примерно на порядок [155], в то время как предел выносливости такой же, как при испытании в воздухе. При высоких уровнях циклических нагрузок ( а = 950 МПа) долговечность молибдена в вакууме и в воздухе одинаковая [156], по мере уменьшения напряжений в вакууме долговечность заметно возрастает, но предел вьн носливости в обоих случаях одинаковый. Качественно подобная картина наблюдается для магниевых сплавов МА2 - 1, МА15, МА12. [c.99]

    По характеру изменения хим. состава обрабатываемого изделия л.-т. о, можно разделить на диффузионное насыщение неметаллами или металлами и диффузионное удаление элементов (чаще всего углерода в слабоокислит. среде или водорода в вакууме). Разновидности Х.-т. о. цементация- насыщение гл. обр. стальных изделий углеродом азотирование - насыщение азотом стали, сплавов на основе Ti и тугоплавких металлов оксидирование-окисление поверхностных слоев алюминиевых и магниевых сплавов цианирование и нитроцементация -одновременное насыщение углеродом и азотом стальных (чудных) изделий соотв. из расплава солей и газовой фазы борирование - насыщение бором изделий из стали, сплавов на основе Ni, Со и тугоплавких меташюв силициро-вание - насыщение кремнием алитирование - насыщение алюминием гл. обр. сталей, реже чугунов и сплавов на основе Ni и Со хром ирование и цинкование-насыщение стали соотв. хромом и цинком меднение-насыщение медью изделий из стали. Из всех видов Х.-т. о. наиб, широко используют насыщение стали углеродом и азотом. Углерод и азот быстро диффундируют в железо, образуя при этом твердые р-ры, карбидные и нитридные фазы, резко отличающиеся по физ.-хим. св-вам от железа. [c.230]

    При определении содержания алюминия в магниевых сплавах наиболее точные результаты можно получить весовыми методами— юксихинминовым и бензоатным. При определении оксихинолиновым методом нужно вводить поправку на содержание железа и цинка, а в бензоатном методе — только на содержание железа. [c.221]

    Коррозионное растрескивание магниевых сплавов происходит в водных средах при комнатной температуре. В основном оно наблюдается в деформируемых сплавах. Данных о коррозионном растрескивании литейных сплавов крайне мало, и они носят достаточно противоречивый характер. Основным легирующим элементом, определяющим склонность магниевых сплавов к коррозионному растрескиванию, является алюминий. Основным деформационным механизмом, ответственным за коррозионное растрескивание магниевых сплавов, является действие внутренних остаточных напряжений в материале. В качестве примера, подтверждающего объективность этих тезисов, можно рассмотреть проблему коррозионного растрескивания промышленных. сплавов системы Mg—Л1—2п. Склонность этих сплавов к стресс-коррозии наблюдается при содержании в них алюминия в диапазоне концентраций 3-10 % и отношении А1 / 2п > 2. Чувствительность к коррозионному растрескиванию увеличивается с повышением в сплаве содержания алюминия. Введение в эти сплавы железа или меди еще более повышает склонность сплавов к стресс-коррозии. Магниевые сплавы, не содержащие алюминия, по-видимому, не склонны к коррозионному растрескиванию в большинстве коррозионноактивных сред. Однако в ряде безалюминиевых сплавов склонность к коррозионному растрескиванию может наблюдаться в определенных средах. Так, сплавы М —Мп, легированные Се (при его содержании не ме- [c.79]

    Методы испытаний необходимо разрабатавать и выбирать для каждой группы сплавов в отдельдости. Так, согласно ГОСТ 9020—74 магниевые сплавы испытывают во влажной камере или при полном погружении в 0,001- и 3 %-ные растворы хлористого натрия. Алюминиевые сплавы рекомендуется испытывать при полном погружении в 3 %-ный раствор хлористого натрия, содержащий 0,1 % Н2О2, при переменном погружении в 3%-ный раствор хлористого натрия, в камере соляного тумана или просто во Влажной камере при повышенной температуре и периодической конденсации влаги. Не может быть единого метода испытания для всех сплавов и тем более единых коэффициентов пересчета результатов лабораторных испытаний на длительную эксплуатацию, так как данные коррозионная среда и вид испытаний не в одинаковой степени ускоряют процесс коррозии различных металлов. Периодическая конденсация влаги увеличивает коррозию цинка и стали, а коррозию никеля ускоряет незначительно (если атмосфера не содержит промышленных загрязнений). Железо и его сплавы, как и сплавы алюминия с медью, весьма чувствительны к периодическому смачиванию электролитами, коррозия же кадмия и чистого алюминия при этом ускоряется в меньшей степени. [c.7]

    При выборе покрытия для катодного металла который предполагается законтактировать с магниевым сплавом, предпочтение следует отдать цинку. При контактировании алюминиевых сплавов и трехслойного покрытия по железу с оцинкованной сталью последняя оказывается анодом. По степени увеличения коррозии оцинкованной стали на первом месте стоит трехслойное покрытие по железу (железо-медь-никель-хром), на втором — анодированный сплав Д16 и на последнем — сплав АМц. [c.120]

    При необходимости контакта магниевых сплавов со стальными, медными и другими сплавами последние следует кадмировать или цинковать. Покрываемые кадмием поверхности рекомендуется предварительно фосфатировать. Можно также вместо цинкования применять прокладки из цинка или оцинкованного железа. Места соединения магния с оцинкованной сталью рекомендуется изолировать про [ладоч- [c.139]

    Катодная защита обычно связана с защитой черных металлов, так как из них изготавливается подавляющая часть объектов, работающих под землей и при погружении в воду, например трубопроводы, свайные основания, пирсы, эстакады, суда и др. В качестве материала для расходуемых анодов-протекторов во всемг мире широко применяется магний. Обычно он используется в виде сплава с содержанием 6% алюминия, 3% цинка и 0,2% марганца эти добавки предотвращают образование пленок, которые снижают скорость растворения металла. Выход защитного тока всегда меньше 100%, так как магний корродирует и на нем выделяется водород. Применяется также алюминий, легированный 5% цинка, но разность потенциалов с железом для сплава значительно меньше, чем для магниевого сплава. Она близка к разности потенциалов для металлического цинка, который также применяется для защиты при условии, что путем соответствующего легирования на анодах предотвращается пленкообразование, связанное с обычным для цинка загрязнением примесями железа. Выбор материала для анодов — сложная задача. В почвах или других средах низкой проводимости необходима большая разность потенциалов, посколь- [c.130]

    Не менее подробно, чем сплавы металлов группы редких земель, изучаются в настоящее время и сплавы тория. Большое внимание привлекает магниевый сплав с присадкой тория и марганца, обладаюШий высокой прочностью при температуре около 400° С и пригодный поэтому для современного самолето- и ракетостроения, электронных приборов и т. д. 619]. Изучены диаграммы состояния сплавов тория со многими металлами, установлен ряд интерметаллических соединений тория с алюминием, серебром, золотом, металлами группы железа и др. С церием торий образует растворы как в жидком, так и в твердом состоянии. Сводку литературы по сплавам тория можно найти в книге [619] и в монографии Хансена [29]. [c.244]

    Коррозонная стойкость титана и его сплавов наблюдается в гораздо более широком наборе агрессивных сред, чем сплавов на основе железа или алюминия. Для широкого технологического использования титана и его сплавов особо важна их повышенная стойкость в средах, содержащих хлор-ионы. Это как раз то качество, которого так недостает наиболее широкому классу конструкционных сплавов на основе железа, включая коррозионностойкие стали, а также алюминиевые и магниевые сплавы. [c.239]

    Условия спектрографического анализа магниевых сплавов в общем не отличаются от описанных для определения состава алюминиевых сплавов ([56, 278] и др.). Отличия состоят главным образом в том, что в качестве подставного электрода используют пруток из чистого магния или спектрально чистого угля, а также парные электроды из анализируемого сплава (заточка на полусферу), время предварительного обыскривания составляет 30 сек (при определении железа и кремния 60 сек) и используются другие аналитичеокие пары линий. При определении кремния иногда рекомендуется медный -подставной электрод. [c.170]

    Помимо уменьшения площади катодных включений в сплаве, уменьшения его общей катодной активности можно-достичь увеличением перенапряжения катодного процесса,. В качестве иллюстрации здесь следует указать на снижение водородного перенапряжения и связанное с этим уменьшение скорости растворения цинка, содержащего примеси Ре, Си или благородных металлов, путем его легирования кадмием, ртутью или простЫхМ амальгамированием его поверхности. По имеющимся в литературе данным можно также заключить, что дополнительное легирование марганцем (до 0,5—1%) технического магния и некоторых гетерогенных магниевых сплавов на основе технического магния, содержащих заметные примеси железа, значительно снижает скорость их коррозии в растворах хлоридов. Это, по-видимому, также определяется увеличением катодного перенапряжения на железной микроструктур-ной составляющей при введении в сплав марганца. [c.15]

    Возникновение склонности к коррозии под напряжением у магниевых сплавов исследователи объясняют по-разному. Некоторые [40] высказывают предположение, что образование железо-алюминиевой составляющей, выделяющейся преимущественно параллельно определенным кристаллограйическим плоскостям, способствуют созданию электрохимической неоднородности, так как эта фаза может служить катодом по отношению к твердому раствору. [c.273]


Смотреть страницы где упоминается термин Железо в магниевых сплавах: [c.275]    [c.333]    [c.80]    [c.80]    [c.115]    [c.200]    [c.270]    [c.829]    [c.836]    [c.722]    [c.141]    [c.141]    [c.193]   
Колориметрические методы определения следов металлов (1964) -- [ c.487 , c.488 ]




ПОИСК





Смотрите так же термины и статьи:

Железо сплавы

Магниевые сплавы

Магниевый ИСМ



© 2025 chem21.info Реклама на сайте