Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тонкослойная растворенных веществ

    Широкое распространение получила тонкослойная хроматография (ТСХ), причем в качестве сорбента предпочитают использовать силикагель с размером зерен 0,2 мм (рис. 25). Разбавленные растворы исследуемых веществ (или реакционных смесей) и растворы веществ сравнения при помощи капилляра (как, например, для определения температуры плавления или пипетка для определения сахара в крови) наносят в виде точек на линию старта (нижний край пластинки) и проявляют в хроматографической камере восходящим методом. [c.47]


    В данном подразделе рассматриваются особенности теплообмена при затвердевании растворов, реализуемых в аппаратах тонкослойного намораживания веществ на плоских пластинах, охлаждаемые криогенными жидкостями (например, жидким азотом). [c.119]

    Если реакция ведется с дифенилолпропаном, полученный после удаления спирта остаток содержит 15% трис-фенола I. Чтобы повысить концентрацию трис-фенола, используют тонкослойную хроматографию. Полученное вещество очищают переосаждением из уксусной кислоты, как описано ниже. В случае использования орто-пара-изомера дифенилолпропана растворяют остаток при нагревании в ледяной уксусной кислоте, а затем осаждают трис-фенол I при добавлении воды. Продукт имеет т. пл. 180—190,5"С. Для дальнейшей очистки его еще раз переосаждают из уксусной кислоты. Выход 67%.  [c.190]

    М. С. Цвет пропускал раствор анализируемых веществ и подвижной фазы через столб адсорбента, находящегося в стеклянной трубке. В связи с этим его метод получил название колоночной хроматографии. В 1938 г. Н. А. Измайлов и М, С. Шрайбер предложили видоизменить метод Цвета и проводить разделение смеси веществ на пластинке, покрытой тонким слоем адсорбента. Так возникла тонкослойная хроматография, позволяющая проводить анализ с микроколичеством вещества. [c.10]

    На готовой хроматограмме пятна очерчивают карандашом, отмечают центр пятна и замеряют расстояние от него до линии старта. В тонкослойной хроматографии неорганических веществ невозможно указать постоянные значения Rf, так как отношение расстояния, пройденного ионом, к расстоянию, пройденному фронтом растворителя, зависит от влажности сорбента. Поэтому можно говорить только о последовательности расположения характерных пятен отдельных ионов. Целесообразно одновременно нанести на бумагу эталонные растворы соединений известных ионов, а также получать хроматограммы для различных концентраций анализируемых веществ. [c.89]

    Количественный анализ тонкослойных хроматограмм можно осуществлять, исходя из размера пятен, так как площадь пятна зависит от количества элемента, нанесенного на слой носителя. Площадь пятна зависит также от активности сорбента-носителя, толщины его слоя и объема наносимого раствора. Для сравнения на ту же пластинку наносят контрольные количества этого вещества с известной концентрацией. Площадь пятна определяют так же, как в хроматографии на бумаге (стр. 182). [c.187]


    Фракционированием в общем смысле называется разделение сложной смеси компонентов на смеси более простого состава или в пределе на индивидуальные составляющие. Применительно к нефти такое разделение можно проводить различными методами, базирующимися на различии в физических и физико-химических свойствах веществ нефти. Чаще всего используют в этих целях различия в температурах кипения (перегонка и ректификация) в скоростях испарения, зависящих главным образом от молекулярного веса (молекулярная перегонка, тонкослойное испарение) в склонности к адсорбции на различных пористых телах (хроматография) в растворимости в различных растворителях (экстракция) в температурах плавления (кристаллизация из растворов) и в некоторых других свойствах. Иногда при фракционировании отдельные методы комбинируются, например экстракция и перегонка (экстрактивная раз-гонка), или адсорбция и ректификация (гиперсорбция), адсорбция и экстракция (анализ смолистых веществ) и т. п. [c.79]

    Как и в бумажной хроматографии, положение пятна на тонкослойной хроматограмме характеризуется фактором замедления Бесцветные вещества на хроматограмме с закрепленным слоем могут быть обнаружены при опрыскивании хроматограммы растворами реагентов, образующих с исследуемыми веществами окрашенные продукты. Для этой цели может быть использована концентрированная серная кислота, под влиянием которой на хроматограмме в местах нахождения органических веществ образуются темные пятна. Применять опрыскивание для проявления хроматограмм с незакрепленным слоем нельзя. [c.48]

    Посторонние вещества. Проводят испытание, как описано в разделе Тонкослойная хроматография (т. 1, с. 92), используя в качестве адсорбента силикагель Р2 и в качестве подвижной фазы смесь 85 объемов 1-пропанола Р, 10 объемов безводной муравьиной кислоты Р и 5 объемов воды. Для приготовления испытуемого раствора растворяют 75 препарата в 5 мл воды при легком нагревании (раствор А). Готовят раствор сравнения, содержащий 0,12 мг/мл стандартного образца никотиновой кислоты СО (раствор Б). Наносят на пластинку 10 мкл раствора А, используя две аликвоты по 5 мкл и давая пластинке высохнуть в токе холодного воздуха после первого нанесения затем отдельно наносят 5 мкл раствора Б. Вынимают пластинку из хроматографической камеры, высушивают ее в токе теплого воздуха и оценивают хроматограмму в ультрафиолетовом свете (254 нм). Помимо основного пятна, на хроматограмме, полученной с раствором А, должно наблюдаться не более трех дополнительных пятен, интенсивность которых не должна превышать интенсивность пятна, полученного на хроматограмме с раствором Б. [c.28]

    Посторонние вещества. Проводят испытание, как описано в разделе Тонкослойная хроматография (т. 1, с. 92), используя силикагель Р2 в качестве адсорбента и в качестве подвижной фазы смесь 85 объемов циклогексана Р, 15 объемов этилацетата Р и 3 объемов диэтиламина Р. Наносят отдельно на пластинку 10 мкл каждого из двух растворов в хлороформе Р, содержащих (А) 20 мг испытуемого вещества в 1 мл и (Б) 0,20 мг испытуемого вещества в 1 мл. Вынимают пластинку из хроматографической камеры, дают ей высохнуть на воздухе и оценивают хроматограмму в ультрафиолетовом свете (254 нм). Любое пятно, полученное на хроматограмме с раствором А, кроме основного пятна, не должно быть более интенсивным, чем пятно, полученное с раствором Б. [c.36]

    Посторонние алкалоиды. Проводят испытание, как описано в разделе Тонкослойная хроматография (т. 1, с. 92), используя в качестве адсорбента силикагель Р1, а в качестве подвижной фазы смесь 72 объемов этанола ( 750 г/л) ИР, 30 объемов циклогексана Р и 6 объемов аммиака ( 260 г/л)ИР. Наносят отдельно на пластинку по 10 мкл каждого из двух растворов в смеси 4 объемов соляной кислоты (0,01 моль/л)ТР и 1 объема этанола ( 750 г/л) ИР, содержащих (А) 50 мг испытуемого вещества в 1 мл и (Б) 0,66 мг испытуемого вещества в 1 мл. [c.85]

    Методы определения метилмеркура и других соединений посредством газо-жидкостной и тонкослойной хроматографии [438] основаны на экстракции веществ бензолом, связывании ионов ртути тиосоединениями после подкисления соляной кислотой водного раствора вещества реэкстрагируются в бензол. Существует несколько способов извлечения и онределения ртутьсодержащих соединений [300, 437, 436]. Приведем некоторые из них [437]. [c.145]

    Для использования данных, полученных при помощи тонкослойной бумажной хроматографии, с препаративной целью можно применять порошок целлюлозы (стр. 280) в колонке или же работать со стеклянной колонкой, содержащей кружки фильтровальной бумаги, которые утрамбовывают стеклянной палочкой по мере наполнения колонки. Можно также рекомендовать нанести на широкий лист фильтровальной бумаги черту из раствора вещества (или смеси веществ) по всей стартовой линии, после чего свернуть бумагу (руками в чистых резиновых перчатках) в направлении, перпендикулярном стартовой линии, в плотный цилиндр, в который и подвергнуть исследованию восходящей хроматографией. [c.293]


    Сущность этого метода, как и хроматографирования на бумаге, заключается в нанесении раствора вещества или смеси веществ на тонкий слой с последующим продвижением отдельных компонентов смеси с разной скоростью по этому слою под действием одновременно движущегося в том же направлении растворителя. Процесс протекает в закрытой камере, атмосфера которой насыщена парами растворителя. Поэтому многие приведенные в этой главе указания, каеающиеся техники эксперимента, могут быть с успехом применены как при тонкослойной, так и при бумажной хроматографии. [c.294]

    Кроме очистки стоков от загрязняющих веществ, немаловажное значение имеет извлечение ценных компонентов из растворов. Сорбционное концентрирование широко применяется в аналитической химии белков, так как позволяет избирательно выделять эти вещества из биологических сложных систем. Изучена адсорбция бычьего сывороточного альбумина (БСА) на незаряженной и поляризованной поверхности исходного и модифицированного гидроксидом титана углеродного волокна. Подобраны оптимальные условия иммобилизации белков на тонкослойных сорбентах. Показано, что для тонкослойных покрытий гидроксидом титана степень обратимости адсорбции белка зависит от текстуры исходной матриш.1. Изменение заряда повфхности волокна оказывает значительное влияние на адсорбируемость БСА модифицированным сорбентом, что обусловлено различными поверхностными свойствами исходного и титансодержащего волокна. Подобраны условия электродесорбции БСА с поверхности волокнистых материалов. [c.208]

    Большие возможности в органическом анализе представляет сочетание полярографии с хроматографией — х р о м а т о п о л я-рография — где полярографические датчики анализируют последовательно выходящие из хроматографической колонки вещества. В приложении к бумажной и тонкослойной жидкостной хроматографии этим методом можно определять вещества с близкими значениями У /, избегать проявления хроматограмм, заменяя его полярографированием вдоль линии подъема раствора. [c.279]

    Адсорбционная хроматография. Для сорбции и повторного выделения в раствор комплексных соединений металлов, находящихся в следовых количествах в органических растворителях, используют носители, например AI2O3, aS04, СаСОз, MgO и др. В аналитической химии следовых количеств веществ в основном применяют метод тонкослойной хроматографии. [c.421]

    По природе взаимодействия разделяемых веществ с твердой фазой различают адсорбционную, распределительную и ионообменную хроматографии. Адсорбционная хроматография основана на молекулярной адсорбции и подчиняется уравнению Лэнгмюра. Ионообменная хроматография определяется процессом ио1нообмена. В основе распределительной хроматографии лежит различие н коэффициентах распределения разделяемых веществ между двумя жидкими фазами. По методике проведения различают колоночную, хроматографию на бумаге и тонкослойную. Сорбция, иоиный обмен, распределение между фазами различного состава протекают непрерывно при последовательном многократном повторении. При колоночной хроматографии изучаемую смесь веществ в виде раствора (жидкая фаза) пропускают через колонку со слоем сорбента (твердая фаза). [c.254]

    Большинство природных и синтетических веществ нельзя перевести в газовую фазу, поэтому область применения жидкостной хроматографии значительно шире, чем газовой. В последние годы аналитическая жидкостная хроматография в различных ее вариантах (колоночная, тонкослойная) развивается очень быстро. Однака молекулярная теория жидкостной хроматографии, как и молекулярная теория адсорбции из растворов (см. лекции 14 и 15), еще не разработана. Причиной этого является сложность системы и необходимость учета межм олекулярного взаимодействия молекул всех компонентов раствора не только с адсорбентом, но и друг с другом, причем находящихся как в адсорбированном состоянии, так и в растворе. Поэтому развитие молекулярной теории жидкостной хроматографии зависит от состояния и развития молекулярной теории жидкостей и разбавленных растворов. Поэтому, как и в лекциях 14 и 15 по адсорбции из растворов, мы ограничимся здесь лишъ качественным рассмотрением этих вопросов. [c.282]

    Настоящее учебное пособие предназначено для студентов химических специальностей университетов. В методическом отношении оно отражает многолетний опыт преподавания автором спецкурса Хроматографический анализ растворов неорганических соединений в Одесском государственном университете им. И. И. Мечникова. В книге рассматриваются основные принципы хроматографии, их применение к исследованию многокомпонентных водных растворов неорганических веществ, теоретическое обоснование каждого метода, возможности использования того или иного хроматографического метода (ионообменная, распределительная, осадочная, адсорбционно-комплексообра-зовательная, окислительно-восстановительная в колоночном, бумажном и тонкослойном вариантах) при решении различных задач, которые могут возникнуть в работе химика-аналитика. [c.3]

    К. М. Ольшанова и Л. А. Куницкая [164] разработали методику качественного анализа катионов III и IV аналитических групп с помощью осадочной тонкослойной хроматографии. В качестве сорбента применяли оксид алюминия ( для хроматографии ) и силикагель КСК-2. Сорбенты без добавления связующего вещества наносили на стеклянную пластинку (9x12 см) слоем 0,4 мм. Для исследования применялись растворы соответствующих солей в пределах концентраций 0,1—0,25 н. по отношению к каждому катиону для открытия катионов применяли высокоселективные проявители, дающие специфическую окраску с исследуемым катионом. Несложная техника выполнения и быстрота метода дают возможность использовать его как контрольный при качественном анализе неорганических веществ. [c.210]

    Совсем недавно появилось описание новой разновидности хроматографического анализа, названного пиковой тонкослойной окислительно-восстановительной хроматографией [140]. Этот метод был применен для количественного определения церия (IV) в растворах и заключается в следующем. На стеклянную пластинку наносили сорбент — оксид алюминия или силикагель в виде суспензии. Толщина слоя сорбента составляла 0,5 мм. На линию старта наносили капилляром по 0,02 мл хроматографируемого раствора. Пластинку помещали в наклонном положении в раствор смеси 3%-ного раствора перекиси водорода и 2 н. раствора аммиака, смешанных в определенном соотношении. Через 10—15 мин образовалась оксихроматограмма, на которой исследуемые вещества отображались в виде пиков. Было найдено, что с увеличением концентрации раствора церия высота пиков оксихроматограмм пропор- [c.224]

    Для определения общего содержания и идентификации отдельных веществ были использованы следующие методы для флавоноидов — метод Лоренца-Арнольди, усовершенствованный Вадовой [7] для идентификации применен метод хроматографии на бумаге в 60%-ной уксусной кислоте с использованием проявителя 1 %-ного спиртового раствора хлористого алюминия. Антоциановые вещества количественно определены по калибровочной кривой цианидина [43] и идентифицированы хроматографией на бумаге (одно пятно как цианидин Х ,ах =555 нм второе пятно не идентифицировано). Каротиноиды идентифицированы при помощи тонкослойной хроматографии на окиси алюминия [74] в виде -каротина, -каротин — моноэпоксида и криптоксантина по величинам и максимумам поглощения (450 нм в петролейном эфире и 460 нм в хлороформе). [c.393]

    Целлюлозный адсорбент для тонкослойной хроматографии приготовляют из целлюлозного порошка, для получения которого 800 г хлопковой целлюлозы кипятят с 5 л 10%-ного раствора НС1 в абсолютном этаноле в течение 20— 25 мин, промывают водой и метанолом и высушивают. S г полученной порошкообразной целлюлозы смешивают с 0,3 г гипса и 15 мл воды и полученную пасту наносят равномерным слоем на стеклянные пластинки. Исследуемую смесь углеводов наносят на приготовленный слой адсорбента на расстоянии 15 мм от конца пластинки. Пластинки помещают в камеры с растворителем так, чтобы уровень растворителя был на 10 мж ниже нанесенных на пластинки веществ. Хроматофафирование ведут при комнатной температуре. После хроматографирования пластинки вынимают из камеры, высушивают, проявляют и определяют величину Rf каждого моносахарида. Для идентификации отдельных компонентов параллельно проводят опыты со смесью известных углеводов. [c.78]

    Состав природных соединений экстракта был изучен путем селективного разделения его веществ и последующей идентификации. Для этого экстракт был фракциопировап по методу избирательного извлечения группы веществ органическими растворителями. Водный раствор экстракта последовательно обрабатывали хлороформом, диэтиловым эфиром, этилацетатом и п-бутаполом. Полученные извлечения упаривали досуха, сушили до постоянной массы, взвешивали. Высушенные остатки фракций изучали на присутствие различных соединений с помощью диагностических реактивов, тонкослойной хроматографии (ТСХ), а также УФ- и ИК-спектороскопии. [c.53]

    Посторонние примеси. Проводят определение, как описано в разделе Тонкослойная хроматография (т. 1, с. 92), используя в качестве адсорбента силикагель Р4, а в качестве подвижной фазы смесь 5 объемов 1-бутанола Р, 4 объемов воды и 1 объема уксусной кислоты ( 300 г/л) ИР. Наносят отдельно на пластинку по 5 мкл каждого из трех растворов в метаноле Р, содержащих (А) 40 мг испытуемого вещества в 1 мл, (Б) 0,40 мг испытуемого вещества в 1 мл и (В) 0,40 мг бефения оксинафтоата СО в 1 мл. Вынимают пластинку из хроматографической камеры, дают ей высохнуть на воздухе и оценивают хроматограмму в ультрафиолетовом свете (254 и 365 нм). При 254 нм видны два основных пятна на хроматограммах растворов А, Б и В, в то время как при 365 нм флуоресцируют только пятна, близкие к фронту растворителя. Любое дополнительное пятно, видимое на хроматограмме, полученной с раствором А, кроме двух основных пятен, не должно быть более интенсивным при рассмотрении при двух длинах волн, чем пятно, расположенное ближе к стартовой линии при хроматографировании раствора Б. [c.56]

    Посторонние стероиды. Проводят определение, как описано в разделе Тонкослойная хроматография (т. 1, с. 92), используя в качестве адсорбента силикагель Р1, а в качестве подвижной фазы смесь 77 объемов дихлорметана Р, 15 объемов эфира Р, 8 объемов метанола Р и 1,2 объема воды. Наносят отдельно на пластинку по 1 мкл каждого из двух растворов в смеси 9 объемов хлороформа Р и 1 объема метанола Р, содержащих (А) 15 мг испытуемого вещества в 1 мл и (Б) 15 мг бетаметазона СО в 1 мл на пластинку также наносят 2 мкл третьего раствора (В), состоящего из смеси равных объемов растворов А и Б, I 1 мкл четвертого раствора (Г), содержащего 0,15 мг испытуемого вещества в 1 мл в той же смеси растворителей, которая использована для растворов А и Б. Вынимают пластинку из хроматографической камеры, дают ей высохнуть на воздухе до удаления растворителей и нагревают при 105 °С в течение 10 мин, дают остыть, опрыскивают раствором тетразолия синего в гидроокиси натрия ИР и оценивают хроматограмму в дневном свете. Любое пятно, полученное с раствором А, кроме основного пятна, не должно быть более интенсивным, чем пятно, полученное с раствором Г. [c.59]

    Б. Проводят испытание, как описано в разделе Тонкослойная хроматография (т. 1, с. 92), используя кизельгур Р1 в качестве адсорбента, а для импрегнирования пластинки смесь 10 объемов 2-феноксиэтанола, 5 объемов макрогола 400 Р и 85 объемов ацетона Р. После того как растворитель достигнет вершины пластинки, вынимают пластинку из хроматографической камеры и тотчас используют. В качестве подвижной фазы используют смесь 2 объемов диэтиламина Р и 100 объемов петролейного эфира Р1, насыщенного 2-феноксиэтанолом Р. Наносят отдельно на пластинку по 2 мкл каждого из двух растворов в хлороформе Р, содержащих (А) 2,0 мг испытуемого вещества в 1 мл и (Б) 2,0 мг стандартного образца хлорпромазина гидрохлорида СО в 1 мл. Вынимают пластинку из хроматографической камеры, дают ей высохнуть на воздухе и оценивают хроматограмму в ультрафиолетовом свете (365 нм), наблюдая флуоресценцию, появляющуюся через 2 мин. Опрыскивают пластинку раствором серной кислоты в этаноле ИР и оценивают хромато грамму в дневном свете. Основное пятно, полученное с раствором А, соответствует по положению, внешнему виду и интенсивности пятну, полученному с раствором Б. [c.78]

    Посторонние стероиды. Проводят испытание, как описано в разделе Тонкослойная хроматография (т. 1, с. 92), используя в качестве адсорбента силикагель Р1, а в качестве подвижной фазы смесь 77 о,бъемов дихлорметана Р, 15 объемов эфира Р ,. 8 объемов метанола Р и 1,2 объема воды. Наносят отдельно на пластинку по 1 мкл каждого из двух растворов в смеси 9 объе -мов хлороформа Р и 1 объема метанола Р, содержащих (А) 15 мг испытуемого вещества в 1 мл и (Б) 15 мг стандартного сгбразца дексаметазона ацетата СО в 1 мл на пластинку наносят также 2 мкл третьего раствора (В), состоящего из смеси равных объемов растворов А и Б, и 1 мкл четвертого раствора [c.99]

    Посторонние стероиды. Проводят испытание, как описано в разделе Тонкослойная хроматография (т. 1, с.92), используя в качестве адсорбента силикагель Р1, а в качестве подвижной фазы смесь 77 объемов дихлорметана Р, 15 объемов эфира Р, 8 объемов метанола Р и 1,2 объема воды. Наносят отдельно на пластинку по 1 мкл каждого из двух растворов в смеси 9 объемов хлороформа Р и 1 объема метанола Р, содержащих (А) 15 мг испытуемого вещества в 1 мл и (Б) 15 мг стандартного фразца дексаметазона СО в 1 мл на пластинку наносят также 2 мкл третьего раствора (В), состоящего из смеси равных объемов растворов А и Б, и 1 мкл четвертого раствора (Г), содержащего 0,15 мг испытуемого вещества в 1 мл в смеси тех же растворителей, что были использованы для растворов А и Б. Вынимают пластинку из хроматографической камеры, дают ей высохнуть на воздухе до удаления растворителей и нагревают при [c.102]


Смотреть страницы где упоминается термин Тонкослойная растворенных веществ: [c.214]    [c.125]    [c.113]    [c.221]    [c.361]    [c.253]    [c.258]    [c.355]    [c.42]    [c.51]    [c.135]    [c.141]    [c.68]    [c.86]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.39 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.39 ]




ПОИСК







© 2025 chem21.info Реклама на сайте