Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий катионы

    Осаждение гидроокисей. Осаждение гидроокисей широко применяется и в качественном, и в количественном анализе для открытия, отделения и определения катионов. В некоторых случаях разделение катионов основано на амфотерном характере некоторых окислов металлов. Так, например, железо отделяют от ванадия, молибдена, алюминия и т. п. элементов, обрабатывая раствор избытком ш,елочи. В других случаях разделение элементов основано на различной растворимости гидроокисей. Так, при анализе многих руд, металлов, шлаков, известняков и т. п. материалов, для отделения алюминия и железа от марганца, магния, кальция и других элементов используют то обстоятельство, что гидроокиси большинства трехвалентных металлов значительно менее растворимы, чем гидроокиси многих двухвалентных металлов. Слабые основания, как, например, гидроокись аммония, пиридин (С Н Н) и др., количественно осаждают гидроокиси алюминия и железа, тогда как ионы кальция, магния и многих Других двухвалентных элементов остаются в растворе. [c.94]


    Кроме бериллия, электролизом расплавленных солей можно получать и другие тугоплавкие металлы (скандий, иттрий, титан, цирконий, гафний, торий, ванадий, ниобий, тантал, хром, молибден, вольфрам и рений). Все они являются элементами переходных групп периодической системы, для которых характерно образование катионов нескольких валентностей. [c.530]

    Использование электронных спектров для получения структурной информации прекрасно иллюстрируют результаты исследования электронной структуры иона ванадила [38]. При интерпретации спектра ва-надил-иона VO полагают, что в связи V — О имеет место значительное я-связывание. Соединения, в которых, согласно данным рентгеноструктурного анализа, содержится группа VO , дают сходные электронные спектры переноса заряда и в твердом состоянии и в растворе. Поэтому можно предположить, что водные растворы этих комплексов содержат группы УОЩ О) , а не ViH O) . Протонирование VO в принципе должно заметно влиять на спектр переноса заряда. Предполагается, что кислород не протонируется, поскольку его основность ослаблена из-за образования я-связи с ванадием. Полный расчет по методу МО для VOiHjO) представлен в статье [38], там же дано отнесение полос в спектре водного раствора V0S04-5H20. Аналогичные исследования других окси-катионов также свидетельствуют о значительном п-связывании металл — кислород [39] и помогают установлению электронной структуры этих частиц. [c.108]

    Катионы со степенями окисления ванадия от (+11) до (+1У) можно получить при последовательном восстановлении катиона У02+. Катион УО2+ — сильный окислитель, он переходит в > стойчивый катион УО . Аквакатионы ванадия (II) н (П1) проявляют сильные восстановительные свойства. Оба эти катиона окисляются кислородом воздуха, а нон [У(Н20)б] — даже водой с выделением водорода. [c.236]

    В русской литературе еще катион V0 + называют катионом ванадила. — Прим. ред. [c.43]

    Металлопорфирин образуется путем замещения атомов водорода в НН-группах катионами металлов,обычно двухвалентными [83]. МП обладают значительной поверхностной активностью [84, 85]. Кроме этого, ванадий, входящий в их состав, является ядом для катализаторов в нефтепереработке. В связи с этим изучение содержания МП в составе нефтей представляет большой интерес. [c.96]

    По своему химическому поведению молибден и вольфрам гораздо сильнее отличаются от хрома, чем между собой. Например, в отличие от хрома степень окисления -f 3 для молибдена и вольфрама реализуется лишь в небольшом числе катионных комплексов. Реакции хрома(П1) во многом сходны с реакциями железа (П1) и алюминия. В степени окисления -f6 хром несколько напоминает ванадий (4-5). [c.618]


    Для ванадия (IV) известны как катионные, так и анионные комплексы. . [c.126]

    Первоначально этот реагент был предложен для осаждения меди, с чем и связано название его. Однако в настоящее время он гфименяется не для определения меди, а для осаждения катионов других металлов, например железа, ванадия, циркония, титана, олова, тантала, ниобия, четырехвалентного урана и др. [c.128]

    Поскольку солеобразные соединения ванадия, ниобия и тантала в водных растворах сильно гидролизованы по катиону, их выделение представляет известные трудности, особенно с учетом ярко выраженной восстановительной активности низших производных. Однако сухим путем удается получить индивидуальные соли даже для ниобия и тантала в высших степенях окисления. Существование сульфатов и фосфатов 32(804)5 и Э ,(Р04)з ниобия и тантала и отсутствие подобных соединений ванадия указывают, во-первых, на стабилизацию высшей степени окисления в ряду V—Nb—Та, а во-вторых, на усиление основного характера в ряду V (+5)—Nb (+5)—Та (-f 5). [c.309]

    В 22 было указано, что купферон осаждает в кислом растворе железо, титан, цирконий и др. Осадки обычно прокаливают и взвешивают в виде окислов. Вместо этого осадок можно отфильтровать, промыть и обработать избытком рабочего титрованного раствора ванадиевокислого аммония. Купферон, связанный ранее с тем или другим катионом, при нагревании окисляется пятивалентным ванадием. Реакция протекает по уравнению  [c.393]

    Если перл, полученный как в окислительном, так и в восстановительном пламени газовой горелки, прозрачен и бесцветен в нагретом и охлажденном состоянии, то это указывает на отсутствие в исходном анализируемом образце катионов меди, серебра, сурьмы, висмута, титана, ванадия, хрома, молибдена, вольфрама, урана, марганца, железа, кобальта, никеля. Возможно, однако, присутствие катионов щелочных металлов, кальция, магния, цинка, кадмия, алюминия, свинца, олова. Если охлажденные перлы — белые (имеют вид белой эмали), то возможно присутствие в исходном анализируемом образце небольших количеств стронция или бария. [c.506]

    Она получается также при сплавлении с щавелевой кислотой в виде темно-синих блестящих кристаллов. Диоксид получается также путем восстановления сернистым газом, сероводородом, щавелевой кислотой и др. восстановителями водных подкисленных растворов солей пятивалентного ванадия. При этом растворы окрашиваются в синий цвет, характерный для катиона ванадила. УОз растворяется в минеральных кислотах, а также в щелочах с образованием ванадитов бурого или черного цвета. [c.310]

    Купферон значительно более эффективен при осаждении катионов других металлов, в частности при анализе руд и сплавов, содержащих некоторые редкие элементы. Купферон широко применяется для осаждения ионов железа, ванадия, циркония, титана, олова, тантала, ниобия, четырехвалентного урана (ионы шестивалентиого урана не осаждаются) и др. Эти ионы осаждаются в сильнокислой среде, что позволяет отделить их от ряда других ионов, не осаждающихся в этих условиях. Таким образом названные выше ионы отделяют от алюминия, бериллия, марганца, никеля, шестивалентного урана, фосфатов и др. Осадки обычно прокаливают и взвешивают в виде окислов. [c.103]

    Возникновению окрашенных соединений благоприятствует поляризующее действие катионов. Например, окись калия бесцветна, так же как окиси кальция, скандия и титана (IV), но окислы титана (III), ванадия, хрома, марганца, железа, кобальта, никеля и меди окрашены. В этом случае сказывается влияние аниона, деформирующего электронную оболочку катиона. [c.42]

    Наряду с образованием сульфидов для разделения ионов в количественном анализе широко применяется также осаждение различных катионов в виде малорастворимых гидроокисей. При этом для разделения иоиов используют либо амфотерность некоторых из них, либо различия в растворимости разных гидроокисей. Так, железо отделяют от ванадия, молибдена и алюминия, обрабатывая раствор избытком едкой щелочи. При этом неамфотерная гидроокись железа выпадает в осадок, тогда как остальные указанные металлы вследствие амфотерного или кислотного характера их гидроокисей остаются в растворе в виде анионов (VO.3, ЖоОТ и AIO2). [c.121]

    Катализаторы на основе соединений кобальта и никеля образуют 1,4-полибутадиен, а комплексы титана и ванадия — транс-1,4-полибутадиен. Стереоселективность катализатора, молекулярная масса и непредельность полимеров, образующихся под влиянием систем, содержащих А1С1з, в большинстве случаев повышаются в присутствии электронодонорных соединений, способных в той или иной мере подавлять катионную активность кислоты Льюиса, входящей в состав катализатора. [c.100]

    В щелочной среде различные катионы ванадия дают следующие гидроксиды У(0Н)2, У(ОН)ц, У0(0Н)2 и УзОб-мИгО, свойстна которых изменяются от почти чисто основных у У(ОН)г до кислотных у полигидрата оксида ванадия(У). Так, (ОН)2 и У(ОН)з переводятся в раствор при действии кислот-неокислителей, амфотерный дигидроксид-оксид ванадия реагирует и с кислотами, и со щелочами  [c.236]

    Монооксид ванадия V0 получают восстано влением V2O5 водородом при 1700 °С, NbO и ТаО — восстановлением Э2О5 углеродом при 1100°С и при пониженном давлении. V0 — соединение переменного сос"ава (VOo,85-i,25) ои растворяется в разбавленных кислотах с образованием соответствующих солей, содержащих октаэдрические комплексные катионы [У(Н20)б] с электронной конфигурацией При обработке этих солей щелочью выпадает осадок V (ОН) 2, легко окисляющийся на воздухе. [c.518]


    Получены многочисленные соединения У+ и сравнительно немного соединений ЫЬ+ и 73+ . Для У+ известно больше анионных соединений (содержащих УОз , У4О9, [У0р4 " и др.), чем катионных (У0+ , реже — У+ ). Соединения У+ характеризуются большой склонностью к комплексообразованию. Обращает на себя внимание обилие соединений, содержащих группу ванадила (1У) У0+ она входит в виде катиона в состав многих солей, а также содержится в ряде анионных комплексов. В водных растворах группа УО+2 гидратирована, входит в состав аквакомплекса [У0(Н20)5] +, окрашенного в синий цвет.  [c.519]

    Величина IgPpfi меняется в пределах 2,28—2,43. В эту подгруппу сульфидов включаются MnS, FeS, oS, NiS, ZnS. К ним относится и сульфид ванадила VOS. Все сульфиды подгруппы сернистого аммония окрашены, кроме сульфида цинка (белый). Так как катион хрома (II) обладает сильным восстановительным действием и неустойчив (хотя и образуют черный очень малорастворимый сульфид rS), то здесь рассматриваются катионы хрома (III), хромат- и бихромат-ионы кроме марганца (II), рассматриваются также манганат- и перманганат-ионы. Аналитические свойства хрома (III) объясняются структурой электронейтрального атома (ЗiiЧs ). То же самое наблюдается у меди (И) (3d "4si). Трисульфид хрома черно-коричневый, подвергается гидролизу вследствие меньшей растворимости гидроокиси хрома (III). В табл. 38 сопоставлены основные характеристики катионов этой подгруппы. Все катионы данной подгруппы легко переходят из одной степени окисления в другую, используются при редоксметодах анализа и как катализаторы в кинетических методах. В химико-аналитических реакциях этих ионов сказывается сходство их электронной структуры по горизонтальному направлению. Катионы ярко окрашены и образуют разнообразные комплексные соединения. 8-оксихинолин, который называют органическим сероводородом , дает характерные, ярко окрашенные внутрикомплексные соединения с этими катионами, начиная от титана и до цинка (табл. 38). [c.205]

    Соединений Э известно больше, особенно для ванадия. Последние встречаются как в виде катионных соединений У . У(Н20)ь , (V(H20)4 l2l, УО и др., так и виде анионных соединений [УРб1 , [ViSOi) ", y( N)6) ". Соединения У легко окисляются. [c.500]

    Соединения ванадия (IV) и ванадия (V) образованы ковалентными связями и в растворах образуют анионы кислот либо сложные катионы, например У0 + — оксованадий (1У)-ион, УО — ди-оксованадий(У)-ион. [c.239]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Раствор, содержащий ортованадат-ионы, обрабатывают избытком серной кислоты, а затем атомарным водородом. В результате весь ванадий переходит в катионы гексаакваванадия (И). Эти катионы проявляют очень сильные восстановительные свойства (в подтверждение приведите справочные данные), например превращают нитрат-ион в катион аммония, а хлорат-ион — в хлорид-ион при этом сами они переходят в катионы гексаакваванадия(1П). Составьте уравнения всех указанных реакций. [c.134]

    Относительно устойчивые в водном растворе катионы ванадила (подтвердите это справочными данными) могут быть восстановлены до катионов гексаакваванадия(III) с помощью иодоводорода. Предложите другие подходящие восстановители для катиона ванадила. [c.134]

    Катионы ванадила можно перевести а ионы НгУюОгв " с помои1ью перманганат- и дихромат-ионов. Что Вы можете сказать об устойчивости степени окисления ( + IV) у ванадия  [c.134]

    Оксиды УО, УзОа, УОд при действии кислот-неокислителей образуют катионы [У" (Н20)бР+, [У (Н20)вР-, [У (H20)50p+ (или упрощенно У0 + — катион ванадила), [У "(НгО) (0)2] -(и.и1 упрощенно УОг — катион диоксованадия (У)). [c.236]

    Оксиды и гидроксиды ряда металлов также проявляют способность к ионному обмену. Однако в этом отношении они ведут себя неодинаково. Например, кислые оксиды молибдена (VI), вольфрама (VI), урана (VI), ванадия (V) практически не обладают анионообменной способностью, а основные оксиды титана (IV), висмута (1П) обладают лишь незначительной катионообменной способностью и ведут себя как аниониты. Такие амфотерные гидроксиды, как А1(0Н)з, 5п(ОН)4, ЫЬ(ОН)в, Та(ОН)б в кислой среде поглощают анионы, а в щелочной — катионы. [c.45]

    Отвечающий двухвалентному ванадию черный окисел (V0) образуется при нагревании V2O5 до 1700 °С в токе водорода. При неизменности кристаллической структуры [типа Na l с d(VO) = 2,05 А] состав его может довольно сильно отклоняться от строгого соответствия формуле V0 (в пределах VOo,85 — VOi.js ). Закись ванадия довольно хорошо проводит электрический ток. Она нерастворима в воде, но растворяется в разбавленных кислотах, образуя соответствующие соли (окрашенного в фиолетовый цвет катиона V )- Последние являются исключительно сильными восстановителями и при отсутствии окислителей постепенно выделяют из воды газообразный водород. Действием щелочей на их растворы может быть получен серо-фиолетовый осадок У(ОН)з, не выделенный, однако, в чистом состоянии из-за его чрезвычайно легкой окисляемости. [c.490]

    Известны оксиды ванадия V0, V2O3, VO2, V2O5, из которых наиболее кислотным характером обладает V2O5 — вещество оранжевого цвета, низшие оксиды — черные и синие ( Оз). Оксид ванадия (П) имеет основной характер, оксид ванадия (И1)—слабоосновной и легко окисляется соли ванадия (11) способны даже разлагать воду с выделением водорода. В солях ванадия (И1) часто встречается прочная группа V0, называемая ванадилом и ведущая себя как одновалентный катион. [c.210]

    К четвертой аналитической груапе относятся катионы меди Си" , кадмия Сдг , ртути(П) висмута(И1) мышьяка Аз и Аз сурьмы и 8Ь , олова 8п и 811 . Сюда же иногда относят и катионы зо-лота(1П) Аи " , таллия(Ш) свинца РЬ " , германия Ое , ванадия молибдена Мо " , вольфрама оения Ке , иридия палладия Рё , платины Р1 . [c.294]

    Ванадий осаждается в 3-й группе катионов в виде сульфида [V01S, с 5-й группой — в виде пентасульфида, растворимого в избытке сульфида аммония. Уранил-ион осаждается в виде сульфида уранила, таллий (I) — в виде сульфида или хлорида. Сульфиды платиновых металлов не растворимы или плохо растворимы в растворах сульфидов натрия и аммония, в растворе полисульфида аммония. Дисульфид германия легко растворим в этих растворах — аналогично дисульфиду олова. Сульфид германия (II) растворяется в растворах сульфида и полисульфида натрия, но трудно растворим в растворе сульфида аммония. [c.31]


Смотреть страницы где упоминается термин Ванадий катионы: [c.614]    [c.73]    [c.96]    [c.115]    [c.291]    [c.310]    [c.153]    [c.485]    [c.488]    [c.424]    [c.91]    [c.305]    [c.307]    [c.101]    [c.188]    [c.193]   
Общая химия (1979) -- [ c.350 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ смеси катионов III группы в присутствии бериллия, титана и ванадия

Анализ смеси катионов первой—третьей групп (кроме бериллия, титана, церия, циркония, тория, урана и ванадия и в отсутствие ионов РО

Анализ смеси катионов первой—третьей групп в присутствии бериллия, титана, церия, циркония, тория, урана и ванадия

Ванадий на катионитах

Ванадий, атомный и катионные радиусы

Ванадий, атомный и катионные радиусы валентные состояния

Ванадий, атомный и катионные радиусы ионизационные потенциалы

Ванадий, атомный и катионные радиусы маскирующие агенты

Ванадий, атомный и катионные радиусы реагенты для определения

Ванадил, катион

Отделение ванадия от железа на катионите

Систематический анализ смеси катионов первой — третьей групп в отсутствие титана, ванадия и анионов РО

Схема 8. Анализ смеси катионов первой, второй и третьей групп в при. сутствии бериллия, титана, урана, ванадия, циркония, тория и церия, но в отсутствие фосфат-иона

Третья аналитическая группа катионов. Алюминий, хром, железо, марганец, цинк, ванадий, церий, никель, кобальт, бериллий, титан, цирконий, торий, уран



© 2024 chem21.info Реклама на сайте