Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Люминесценция резонансная

    Классификация, основанная на механизме элементарных процессов люминесценции, различает резонансную, спонтанную, вынужденную и рекомбинационную люминесценцию. [c.89]

    Резонансная люминесценция характерна для атомов и некоторых простых молекул при их возбуждении в газовой фазе. Возвращение атомов из возбужденного в нормальное состояние сопровождается излучением кванта люминесценции, равного поглощенному кванту. Обычно у возбужденных атомов происходят те или иные энергетические потери. В результате излучаемые кванты меньше поглощаемых и люминесценция имеет большую длину волны. В настоящее время люминесценцией атомов металлов занимается атомная флуоресценция, которая превратилась в самостоятельный раздел люминесцентного анализа. [c.89]


    II. В высокочастотной области, соответствующей колебательным движениям малых и даже очень малых групп (атомы водорода, отдельные электроны), зондирование структуры основано на несколько ином принципе. Возникновение организованных, в первую очередь кристаллических, структур сразу же резко ограничивает подвижность наблюдаемых при соответствующей частоте групп. По аналогии с температурными искажениями релаксационного спектра это должно приводить к смещению или размазыванию резонансных линий. В радиочастотном диапазоне это может быть расширение линий протонного магнитного резонанса при введении в полимер. электронного парамагнитного зонда — какого-либо устойчивого свободного радикала— характер его ЭПР-сигнала меняется в зависимости от плотности окружения, т. е. от того, находится ли он в кристаллической, жидкокристаллической или изотропной (аморфной) области. В оптическом диапазоне по тем же причинам могут изменяться форма, положение и интенсивность полос колебательных спектров (часто приходится, например, встречаться с термином кристаллическая полоса ). Можно вводить в-полимер электронный зонд— люминофор (например, антрацен) и по изменениям спектральных характеристик поляризованной люминесценции снова судить о подвижности или плотности тех участков, в которых расположен люминофор. [c.54]

Рис. 2.2. Схема возникновения резонансной и спонтанной люминесценции Рис. 2.2. Схема возникновения резонансной и спонтанной люминесценции
    Возможны два пути перехода частицы из возбужденного состояния в основное (рис. 2.2). Первый путь — это непосредственный переход в основное состояние, в результате чего развивается резонансная люминесценция (раньше это явление называли флюоресценцией). [c.54]

    Продолжительность люминесценции связана с тем, что электрону, находящемуся в зоне проводимости, требуется некоторая дополнительная энергия (энергия активации) для перехода на основной энергетический уровень и взаимодействие электрона с дыркой в валентной зоне также протекает не мгновенно. По длительности свечения различают резонансную люминесценцию, или флюоресценцию, и спонтанную люминесценцию или фосфоресценцию (см. 7). [c.190]

    Времена жизни люминесценции можно изучать аналогично тому, как это делается в абсорбционной импульсной спектрофотометрии, за исключением ненужного зондирующего источника света. Очевидным дальнейшим вариантом является использование резонансной флуоресценции для определения концентраций промежуточных продуктов, возникающих под действием фотолитической вспышки. [c.201]


    По механизму элементарных процессов различают резонансную, спонтанную, вынужденную и рекомбинационную люминесценции (рис. 180). [c.432]

    Резонансная люминесценция наблюдается в атомных парах, у некоторых простых молекул и иногда в более сложных системах. [c.432]

    При резонансной люминесценции квант излучения, испускаемый частицей, равен поглощенному кванту (рис. 14.4.71, а). Резонансная люминесценция характерна преимущественно для атомов, а также для простейших молекул, находящихся в газообразном состоянии при низких давлениях. При этом выделяют особый вид резонансной люминесценции— атомную флуоресценцию, т. е. свечение атомов в газовой фазе, возбуждаемое световыми квантами. [c.499]

Рис. 14.4.71. Схема энергетических уровней и электронных переходов при резонансной (а), спонтанной (б) и вынужденной (в) люминесценции Рис. 14.4.71. Схема энергетических уровней и <a href="/info/6182">электронных переходов</a> при резонансной (а), спонтанной (б) и вынужденной (в) люминесценции
    При резонансной и спонтанной люминесценции вероятность возвращения частиц из возбужденного состояния в основное определяется внутренними свойствами частиц и не зависит от температуры. [c.499]

Рис. 2.47. Схема энергетических уровней, иллюстрирующая различные случаи люминесценции 1) резонансная люминесценция, 2) обычная люминесценция (флуоресценция), 3) и 4) антистоксовская люминесценция, 5) фосфоресценция. Рис. 2.47. Схема энергетических уровней, иллюстрирующая различные случаи люминесценции 1) резонансная люминесценция, 2) обычная люминесценция (флуоресценция), 3) и 4) <a href="/info/278783">антистоксовская люминесценция</a>, 5) фосфоресценция.
    На рис. 18-5а поток электромагнитного излучения мощностью Ро падает на химическую пробу точно так же, как и в рассмотренном выше случае поглощения. Если какие-либо компоненты пробы имеют подходящие энергетические уровни, то часть падающего излучения будет поглощаться, и прошедший поток будет иметь несколько меньшую мощность Р. Таким образом, разность мощностей Ро — Р) между падающим (Ро) и прошедшим (Р) потоками идет на возбуждение химических частиц, присутствующих в пробе. На рис. 18-56 этот процесс изображен как стадия поглощения (Л). Возбужденные частицы будут самопроизвольно претерпевать дезактивацию, одним из возможных способов которой является испускание излучения. Если энергия испускается немедленно, то энергия и частота испускаемого фотона будут такими же, как и у первоначально поглощенного излучения. Это — так называемая резонансная флуоресценция она является одним из типов люминесценции и обозначена на рис. 18-56 символом Р. Существуют и другие виды люминесценции, в которых потеря поглощенной энергии осуществляется более сложным путем. Однако эти [c.612]

    Концентрационные эффекты, наблюдаемые в растворах сложных органических соединений, очень разнообразны. Многие из них (деполяризация люминесценции, концентрационное тушение и уменьшение длительности возбужденного состояния молекул) рн могут быть объяснены теорией резонансной миграции энергии, развитой в работах С. И. Вавилова и его школы [1]. [c.285]

    Основные параметры и соотношения. Основными источниками линейчатых спектров служат различные типы газового разряда. Реже применяются источники с оптическим возбуждением (резонансные лампы и твердотельные лазеры) или с возбуждением за счет химических реакций (пламя, хеми-люминесценция). [c.259]

    С. И. Вавиловым и М. Д. Галаниным [13]. Теория этого типа тушения основана на представлении о резонансном индуктивном взаимодействии молекул [14]. Особенностью резонансного тушения является то, что в этом случае передача энергии возбужденной молекулы к молекуле тушителя может происходить без соударения, т. е. на довольно значительном расстоянии (порядка 30—50 А). Поэтому резонансное тушение сравнительно слабо зависит от вязкости растворителя [13, 15] и зависит главным образом от степени перекрытия спектра люминесценции со спектром поглощения тушителя. [c.34]

    В некоторых случаях, особенно в водных растворах, явление концентрационного тушения осложняется физико-химическими явлениями — изменением степени диссоциации растворенного вещества или ассоциацией молекул с образованием димеров или более сложных ассоциатов. При этом часто димеризованные молекулы не обладают люминесценцией (иногда спектр люминесценции у них иной, чем у мономеров), и уменьшение выхода в таких случаях может быть обусловлено двумя причинами. Во-первых, нелюминесцирующие димеры могут давать эффект светофильтра, о котором говорилось выше, и, во-вторых, возможен резонансный перенос энергии от возбужденных простых молекул к димеризованным. [c.34]

    Атомно-флуоресцентный анализ (атомно-флуоресцентная спектрометрия) — метод количественного элементного анализа по атомным спектрам флуоресценции (люминесценции, см. раздел 3). Для получения спектров через атомный пар пробы пропускают излучение, частота которого совпадает с частотой флуоресценции определяемых атомов (резонансная флуоресценция) [7, 8]. [c.248]


    Для объяснения миграции энергии от пигментов к реакционному центру было предложено несколько физических механизмов. Можно считать, что наиболее вероятным механизмом миграции энергии между различными формами пигментов (каротиноиды-зеленые коротковолновые пигменты длинноволновые формы хлорофилла а) является так называемая резонансная миграция при слабых диполь-дипольных взаимодействиях молекул или, иначе говоря, медленный индуктивный резонанс. Очень важно, что этот вид миграции энергии может осуществляться не только в кристаллических системах. Для реализации миграции энергии с помощью медленного индуктивного резонанса необходимо выполнение следующих требований 1) обменивающиеся энергией молекулы должны обладать способностью к люминесценции (но обмен осуществляется не за счет флуоресценции, так как происходит за время, по крайней мере на один порядок величин меньшее), 2) максимум в спектре люминесценции донора должен располагаться в более коротковолновой области спектра, чем максимум в спектре поглощения акцептора, или они должны перекрываться (иначе процесс не сможет осуществляться самопроизвольно), 3) расстояние между донором [c.146]

    Резонансная миграция энергии между молекулами разных видов пигментов получила название гетерогенной, в отличие от гомогенной, осуществляющейся между тождественными молекулами хлорофилла а. Гомогенная резонансная миграция энергии может осуществляться лишь между такими молекулами, которые имеют перекрывающийся спектр поглощения и люминесценции. Хлорофилл а, так же как и бактериохлорофилл а, удовлетворяет этому условию. О большой эффективности гомогенной миграции энергии можно судить по деполяризации света люминесценции хлорофилла а, возбуждаемой монохроматическим поляризованным светом, поглощающимся молекулами хлорофилла а. Это свидетельствует о том, что квант света излучается не той молекулой хлорофилла а, которая его поглотила, а другой. [c.147]

    Дайте определение следующих терминов разрешающая способность, светосила, коэффициент пропускания светофильтра, микрофотометр, фотографическая эмульсия, фотолиз, колориметр, определяемое вещество, спектрофотометр, флуориметр, фосфориметр, спектрофлуориметр, раствор сравнения, коллимирование, люминесценция, резонансная флуоресценция, внутренняя конверсия, интеркомбинационная конверсия, колебательная релаксация, триплетное состояние и эффект внутреннего фильтра. [c.670]

    Основное отличие флюоресценции от фосфоресценции состоит в том, что флюоресценция происходит в течение очень короткого промежутка времени ( 10" с), это быстрозатухающая (резонансная) люминесценция. Фосфоресценция — длительная (спонтанная) люминесценция — происходит в течение значительно большего промежутка времени. Вещество (обычно кристаллы или жидкости) может фосфоресцировать в течение нескольких секунд и даже часов после прекращения облучения. [c.54]

    Флуоресцентные измерения обладают рядом преимуществ в сравнении с абсорбционными. В частности, оптическое поглощение промежуточного продукта, содержащегося в низкой концентрации, вызывает незначительное изменение относительно большой интенсивности зондирующего пучка. Шум , получающийся вследствие случайных флуктуаций интенсивности света, а также из-за статистической природы пучка фотонов, ограничивает чувствительность, достижимую в абсорбционном эксперименте. В люминесцентном эксперименте, напротив, нет излучения кроме того, которое испускается возбужденными соединениями. Статистические ограничения продолжают лимитировать точность, с которой могут измеряться концентрации, но достижимая на практике предельная чувствительность люминесцентного эксперимента обычно значительно выше, чем абсорбционного. По этой причине люминесценция часто используется для изучения веществ, первоначально находящихся в основном состоянии, путем специального оптического возбуждения их в более высокое люминесцентное состояние. В отдельных случаях описанные ранее линейчатые газооазоядные. лям-пы могут использоваться для возбуждения резонансной флуоресценции атомов (например, Н, О, С1) и радикалов (например, ОН). Поскольку флуоресценция изотропна, ее можно регистрировать под углом к направлению возбуждающего пучка. С большим успехом в качестве источника возбуждения можно использовать перестраиваемые лазеры. Лазеры обеспечивают существенно большую гибкость эксперимента, чем газоразрядные лампы. В частности, с их помощью можно возбуждать значительно большее число разнообразных молекулярных частиц (например, ОН, КОз, СН3О, С2Н5О). Более высокая мощность возбуждающего излучения от лазеров обеспечивает высокую чувствительность. Индуцированная лазером флуоресценция (ИЛФ) стала наиболее ценной методикой изучения промежуточных продуктов реакций в газовой фазе. При этом по- [c.196]

    Здесь имеется в виду, что частота ш далека от резонансных частот колебаний электронов (атомных линий поглощения) и Аа не зависит от со. Подчеркнем, что в отличие от явлений люминесценции (флуоресценции, фосфоресценции) и комбинационного рассеяния в рассматриваемых процессах опалесценции не происходит изменения дпины волны — такое рассеяние назьшают упругим . Поэтому при освещении системы монохроматическим светом опалесценция имеет тот же цвет. При освещении системы белым светом преимущественное рассеяние коротких волн, предсказываемое уравнением Рэлея, вызывает голубой цвет опалесценции. Так, цвет неба связан с рассеянием света на неоднородностях атмосферы. [c.195]

    Внеш. магн. поле влияет на выход продуктов р-ции, скорость элементарных процессов взаимод. парамагнитных частиц (рекомбинации радикалов, аннигиляции триплетно-возбужденных молекул, тушения триплетных молекул радикалами и т.п.), интенсивность флуоресценции и хеми-люминесценции, темновую и фотопроводимость мол. кристаллов и орг. полупроводников. Магн. изотопный эффект сопровождается разделением магн. и немагн. изотопов (напр., С и С, о и О). Хим. поляризация электронов и ядер проявляется в спектрах ЭПР и ЯМР продуктов р-ций (радикалов и молекул), при этом положит, поляризация приводит к аномально сильным линиям поглощения, а отрицательная-к линиям эмиссии. В последнем случае создается инверсная населенность зеемановских уровней электронов или ядер (см. Зеемана эффект. Лазер). Когда химически индуцированная отрицат. поляризация ядер достигает значит, величины, превосходящей порог генерации, происходит самовозбуждение радиочастотного излучения и хим. система становится мол. квантовым генератором-хим. радиочастотным мазером. Внеш. высокочастотное резонансное поле стимулирует изменение спина и, следовательно, выхода продукта р-ции или интенсивности люминесценции. Это позволяет регистрировать спектры ЭПР короткоживущих пар парамагнитных частиц по изменению выхода электронов, дырок, возбужденных молекул. На этом принципе основан новый метод магн. резонанса-двойной магн. резонанс (ДМР). [c.624]

    Оптически детектируемый ЭПР (ОД ЭПР) дает информацию о своб. радикалах в радикальных парах, возникающих при радиационном или УФ воздействии в кристаллах и жвдкой фазе. Спиновое состояние радикальной пары (синглетное или триплетное) можно изменить вынужденным путем, вызывая спиновые переходы партнеров пары под действием резонансного микроволнового поля во внешнем магн. поле. Спектр ЭПР при этом регисфируется пзтем изменения выхода продуктов из радикальной пары любым аналит. методом. Наиб, чувствительность получается при использовании оптич. методов, особенно по измерению люминесценции. При изменении напряженности мат. поля записываемый спектр люминесценции в точности повторяет спектр ЭПР радикалов, возникающих в радикальных парах. Чувствительность метода составляет 10-10 частиц в образце, что позва иет получать сведения о спектрах ЭПР, строении и превращениях короткоживущих радикалов, время жизни к-рых составляет порядка 10 с. [c.451]

    Свечение марганца в сульфиде цинка наблюдается в узкой полосе 586 нм при концентрациях активатора 0,1—1%. В селениде цинка подобное свечение наступает только при низких температурах (77 К). Люминесценция марганца в чистых халькогенидах очень слаба. Интенсивность свечения резко возрастает при добавлении С1, А1, Оа, 1п, Си и Ад. Возможно, что это связано с резонансной передачей энергии, поглощенной самоактивированными центрами или центрами синего свечения Си и Ад, ионам Мп +. Люминесценция редкоземельных ионов (Рг, N(1, ТЬ, Ег, Тш) также возникает в присутствии специальных добавок (Си, Ад или Ь1). [c.38]

    Теория миграции энергии удовлетворительно описывает эффект концентрационного тушения в относительно разбавленных растворах люминофоров. Согласно этой теории, между любыми соседними молекулами люминофора, при наличии перекрывания их спектров поглощения и люминесценции, возникает резонансное взаимодействие, приводящее к безызлучательному переносу энергии от возбужденной молекулы к невозбужденной. Чем сильнее налагаются друг на друга спектры поглощения и люминесценции, тем меньше величина пороговой концентрации Со. Если спектры поглощения и люминесценции не накладываются друг на друга, то концен фационное тушение не наблююдается в широком диапазоне концентраций люминофора. Концентрационное тушение может развиваться вследствие передачи энергии от возбужденных молекул на нелю-минесцирующие ассоциаты молекул люминофора. [c.505]

    Динамическое тушение. Количественное описание. Когда взаимодействие люминофора и тушителя носит физический характер, тушение люминесценции осуществляется за счет передачи энергии от электронновозбужденных молекул люминофора к частвдам тушителя. Тушители этого рода делят на два типа— резонансные и нерезонансные. Для резонансных тушителей характерно перекрывание их спектров поглощения со спектрами люминесценции люминофоров. Как правило, даже малые концентрации резонансных тушителей вызьшают сильный тушащий эффект. Спектры поглощения нерезонансных тушителей не имеют зон перекрывания со спектрами излучения люминофоров. Ощутимый эффект тушения люминесценции нерезонансными тушителями достигается лишь при высоких концентрациях последних. [c.506]

    Методы различны по стоимости аппаратурного оформления. Наиболее дешевые — титриметрические, гравиметрические, потенциометрические методы. Аппаратура большей стоимости используется, например, в вольтампе-рометрии, спектрофотометрии, люминесценции, атомной абсорбции. Наиболее высока стоимость аппаратуры, используемой в нейтронно-активационном методе анализа, масс-спектрометрии, ЯМР- и ЭПР-спектроскопии (ядерно-магнитно-резонансная и электронно-парамагнитно-резо-нансная), в атомно-эмиссионной спектроскопии с индуктивно связанной плазмой. [c.37]

    АТОМНО-ФЛУОРЕСЦЕНТНЫИ АНАЛИЗ (атомно-флуоресцентная спектрометрия), метод количеств, элементного анализа по атомным спектрам флуоресценции (см. Люминесценция). Для получения спектров атомный пар пробы облучают излучением, частота к-рого совпадает с частотой флуоресценция определяемых атомов (резонансная флуоресценция). Р-ры исследуемых в-в атомизируют чаще всего в пламенах, реже — в электротермич. атомизаторах, нагреваемых током графитовых тиглях и печах порошки — в тиглях и капсулах, помещенных в пламя. Хим. состав пламен и защитную атмосферу тиглей подбирают так, чтобы тушение флуоресценции было минимальным. Источниками возбуждения служат интенсивные импульсные лампы с полым катодом, лазеры и др. Спектр флуоресценции регистрируют с помощью простых светосильных спектрофотометров. Интенсивность линий флуоресценции — мера конц. элементов в пробе. Для градуировки прибора примен. стандартные образцы известного хим. состава, соответствующего составу пробы. Осн. достоинства метода большая селективность, низкие пределы обнаружения (в р-рах — 10- нг/мл, в порошюх — до 10- —10- % для таких летучих элементов, как d и Ag), большой интервал конц., в к-ром градуировочный график прямолинеен (обычно 1—2 порядка величины концентрации, а с применением лазеров — до 5), простота автоматизации. А.-ф. а, использ. для определения приблизительно 50 элементов в сплавах, горных породах, лунном грунте, растениях, почвах, водах, нефтях, пищ. продуктах и т. д. [c.59]

    Рис. 18-5. а. Схема изопрогшой люминесценции в результате поглощения падающего пучка излучения с мощностью Ро. Мощность люмшесценции (Ь) является некоторой частью поглощенной мощности излучения (Ро— Р). б. Схема энергетических переходов химической частицы в результате поглощения (Л) и резонансной флуоресценции (Р). Резонансная флуоресценция является особым видом люминесценции. [c.612]

    Для возбуждения люминесценции, комбинационного рассеяния и др. изготовляются ртутные дуги с расстоянием между электродами до 1 м. Следует иметь в виду, что резонансные линии ртути 2537 и 1850 А очень сильно самообращаются в разряде, а последняя линия также сильно поглощается кварцем и воздухом. Для получения ярких резонансных линий Вуд предложил прижимать разряд магнитным полем к передней стенке охлаждаемой ртутной дуги. В этом случае можно получить яркую линию 2537 А мало искаженную самообращением. [c.266]

    При. возбуждении хелатов возбужденное состояние молекулы лиганда обычно образуется за счет перехода я -я, и спектр люминесценции при нормальной температуре характеризуется наличием ш.ирокой полосы это видно из рис. 2.36, где представлены спектры поглощения и флуоресценции комплекса 2-(о-о,ксифе-нил)бензоксазола с галлием (III). Хелаты редкоземельных металлов (Sm, Ей, Gd, ТЬ, Dy), а также комплексы хрома (III) и меди (II) при некоторых условиях могут проявлять люминесценцию перенос энергии на резонансный уровень иона металла вызывает люминесценцию, обусловленную переходом d—d или /—f. В этом случае в спектре люминесценции обнаруживаются очень узкие полосы или линии, характерные для данного иона металла. Иногда оказывается возможным даже возбуждение иона металла [например, Gd(III)] оно происходит при переносе энергии к Лиганду, который затем дает я — я-флуоресценцию. [c.102]

    При тушении даже наиболее сильными тушителями, наиримерК , заметное уменыпение выхода (например, в 2—3 раза) наблюдается при концентрации тушителя порядка 0,1 моль л. Гораздо сильнее уменьшение выхода при резонансном тушении или тушении поглощающими веществами . В этом случае соответствующие концентрации тушителя порядка 10 4—10 3 молъ л. При резонансном тушении истинное тушение всегда сопровождается эффектом светофильтра , так как тушитель обычно поглощает в какой-то степени возбуждающий свет и свет люминесценции. Поэтому наблюдаемое общее уменьшение интенсивности свечения оказывается больше обуславливаемого истинным тушением. Резонансное тушение растворов было открыто Перреном и исследовано Т. Ферстером, [c.34]

    С равномерным раснределением энергии по разным длинам волн. Одпако имеющиеся источники, как правило, пе обладают таким распределением, поэтому для создания наиболее выгодных условий возбуждения люмипесцепции нужно иметь представление о распределении энергии в разных областях спектра у различных источников света и об общей их мощности. Соответствующие данные приведены в следующей, VII главе ими следует руководствоваться при выборе источника света для возбуждения. Иллюстрируем сказанное следующим примером. Виллемит, как и многие минералы, люминесцирует при возбуждении только коротковолновым ультрафиолетовым светом. Поэтому для возбуждения люминесценции виллемита казалось бы целесообразным применить ртутную лампу низкого давления, в излучении которой имеется почти только резонансная линия (254 ммк). Однако для получения наибольшей яркости лучше все же использовать ртутную лампу ПРК (см. главу VII), в которой, хотя линия 254 ммк относительно слабее других линий, но абсолютная ее мощность превосходит мощность этой же линии в лампе низкого давления. [c.81]

    Е. Б. Свешникова и В. Л. Ермолаев [Опт. и спектр., 30, 379 (1971)] обсуждали возможность диполь-дипольного индуктивно-резонансного переноса энергии от электронно-возбужденного уровня ионов редких земель на высокие колебательные уровни акцептора. Теоретически оценки неплохо согласуются с эксперимен1гальными результатами по определению времени жизни люминесценции редких земель и константы скорости безызлучательной дезактивации их возбужденных состояний растворителями (водой, тяжелой водой, метанолом и пердейтерометанолом). — Прим. ред. [c.87]

    Теоретическое объяснение появления квазилинейчатых спектров поглощения и люминесценции дается современной теорией электронных переходов в примесных центрах кристаллов. В самом деле, возбуждение примесной молекулы, включенной в кристаллическую решетку растворителя, должно приводить к тому, что часть энергии электронного перехода превратится в энергию колебаний решетки. Так как число нормальных колебаний решетки огромно, то такое взаимодействие, сопровождающее электронный переход в молекуле примеси, должно приводить к размыванию структуры спектра. Между тем, с точки зрения современной теории существует определенная вероятность электронного перехода в примесном центре, при котором колебательное состояние кристалла не изменяется. Такие переходы должны приводить к появлению в спектре поглощения и люминесценции бесформенных линий, которые рассматриваются как оптические аналоги резонансных линий, наблюдаемых в эффекте Мёссбауэ- [c.235]


Смотреть страницы где упоминается термин Люминесценция резонансная: [c.129]    [c.21]    [c.499]    [c.260]    [c.164]    [c.43]    [c.62]    [c.33]    [c.34]   
Физика и химия твердого состояния (1978) -- [ c.432 ]

Биологические мембраны Структурная организация, функции, модификация физико-химическими агентами (2000) -- [ c.209 ]




ПОИСК





Смотрите так же термины и статьи:

Люминесценция

Резонансные



© 2025 chem21.info Реклама на сайте