Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны рецепторные

Рис. 8.2. Схема никотинового холинэргического синапса. Пресинаптическое нервное окончание содержит компоненты для синтеза нейромедиатора (здесь ацетилхолина). После синтеза (I) нейромедиатор упаковывается в пузырьки (везикулы) (II). Эти синаптические везикулы сливаются (возможно, вре.мен-но) с пресинаптической мембраной (1П), и нейромедиатор высвобождается таким путем в синаптическую щель. Он диффундирует к постсинаптической мембране и связывается там со специфическим рецептором (IV). В результате образования нейромедиатор-рецепторного комплекса постсинаптическая мембрана становится проницаемой для катионов (V), т. е. деполяризуется. (Если деполяризация достаточно высока, то появляется потенциал действия, т. е. химический сигнал снова превращается в электрический нервный импульс.) Наконец, медиатор инактивируется , т. е. либо расщепляется ферментом (VI), либо удаляется из синаптической щели посредством особого механизма поглощения . В приведенной схеме только один продукт расщепления медиатора— холин — поглощается нервным окончанием (VII) и используется вновь. Базальная мембрана — диффузная структура, идентифицируемая методом электронной микроскопии в синаптической щели (рис. 8.3,а), здесь не показана. Рис. 8.2. Схема <a href="/info/1561416">никотинового холинэргического синапса</a>. <a href="/info/567158">Пресинаптическое нервное окончание</a> содержит компоненты для синтеза нейромедиатора (здесь ацетилхолина). <a href="/info/1536682">После синтеза</a> (I) нейромедиатор упаковывается в пузырьки (везикулы) (II). Эти <a href="/info/265924">синаптические везикулы</a> сливаются (возможно, вре.мен-но) с пресинаптической мембраной (1П), и нейромедиатор высвобождается таким путем в <a href="/info/103587">синаптическую щель</a>. Он диффундирует к постсинаптической мембране и связывается там со <a href="/info/32074">специфическим рецептором</a> (IV). В <a href="/info/71788">результате образования</a> нейромедиатор-<a href="/info/292453">рецепторного комплекса</a> <a href="/info/102673">постсинаптическая мембрана</a> становится проницаемой для катионов (V), т. е. деполяризуется. (Если деполяризация достаточно высока, то появляется <a href="/info/101645">потенциал действия</a>, т. е. <a href="/info/142311">химический сигнал</a> снова превращается в электрический <a href="/info/99774">нервный импульс</a>.) Наконец, медиатор инактивируется , т. е. либо <a href="/info/104836">расщепляется ферментом</a> (VI), либо удаляется из <a href="/info/103587">синаптической щели</a> посредством особого <a href="/info/19561">механизма поглощения</a> . В приведенной схеме <a href="/info/1728206">только один</a> <a href="/info/137071">продукт расщепления</a> медиатора— холин — поглощается <a href="/info/510193">нервным окончанием</a> (VII) и используется вновь. <a href="/info/509001">Базальная мембрана</a> — диффузная структура, идентифицируемая <a href="/info/117537">методом электронной микроскопии</a> в <a href="/info/103587">синаптической щели</a> (рис. 8.3,а), здесь не показана.

    Наружные мембраны клеток отличаются от внутренних по липидному составу (последние почти не содержат стеринов, имеют соотношение ФХ/ФЭ > 1) и обладают специфическим набором ферментов и рецепторов. Как правило, белки плазматических мембран со стороны внеклеточной среды обильно гликозилированы. Внутриклеточные мембраны содержат мало гликопротеинов и гликолипидов и характеризуются меньшей микровязкостью. Благодаря этому они могут образовывать органеллы малого размера. Мембранные белки выполняют различные специфические функции рецепторные, транспортные, ферментативные, энергопреобразующие и т.д. (см. далее). [c.303]

    Как может связывание гормона с рецептором на наружной поверхности клеточной мембраны влиять на хим.ические процессы внутри клетки Весьма вероятно, что в некоторых случаях рецептор пронизывает мембрану насквозь и контактирует с ферментом, связанным с внутренней поверхностью мембраны Изменение конформационного состояния рецепторного белка, обусловленное связыванием гормона, мо- [c.386]

    Принцип гормон-рецепторного комплекса был постулирован уже и начале столетия П. Эрлихом. Рецепторы гормона локализуются или на клеточной поверхности (клеточные мембраны), нли в цитоплазме клетки. Интересующие нас пептидные или белковые гормоны вступают во взаимодействие с рецепторами, связанными с клеточными мембранами. Первое экспериментальное доказательство наличия связанного с мембраной рецептора удалось получить лишь в 1969—1970 гг. при использовании меченых пептидных гормонов (АКТГ, инсулин, ангиотензин) [571—573]. Затем были установлены специфические рецепторы всех гормонов, и гормон-ре-цепторная концепция стала быстро развиваться. Здесь нужно сослаться на прекрасный обзор Любке и сотр. [574], посвященный этому вопросу. [c.234]

    Осн. путь биосинтеза Э. исходит из холестерина в организме они образуются в железах внутр. секреции (яичниках, семенниках, надпочечниках) непосредственно из андрогенов при участии фермента ароматазы напр., в организме женщины в сутки вырабатывается 300-700 мкг эстрадиола. С помощью транспортной системы крови (альбумин и глобулин, связывающий половые гормоны) Э. доставляются к орга-нам-мищеням, проникают через клеточные мембраны в цитоплазму, 1де связываются с рецепторами Э. Образующийся рецепторный комплекс переходит в адро клетки и активирует геном, что приводит к синтезу специфич. белков, в т.ч. рецепторов. [c.490]

    Помимо родопсина были исследованы также синтез и обмен других компонентов рецепторной мембраны, а именно белка (опсина), фосфолипидов и углеводов. [c.316]


    Ацетилхолин обеспечивает местную деполяризацию нейромышечной пластинки, т. е. появление потенциала концевой пластинки. Те соединения, которые оказывают на нее такое же действие, как и природный медиатор, называются агонистами, а вещества, ингибирующие действие агонистов, называются антагонистами (рис. 8.8). Постсинаптическая мембрана должна обладать структурами, которые могут точно идентифицировать и дифференцировать эти соединения. Связывающий, или рецепторный, белок (подобно ферменту) в специальном активном центре связывает низкомолекулярный лиганд с высоким сродством и селективностью. Это связывание обратимо, т. е. процесс ассоциации — диссоциации медиатора и рецептора находится в равновесии. [c.202]

    Функционирование бактериальной пурпурной мембраны вызывает неослабевающий интерес. Это связано с тем, что в его основе лежит относительно простой механизм улавливания энергии света без участия хлорофилла, а рецепторный пигмент, бактериородопсин, сходен со зрительными пигментами животных. [c.379]

    Мембраны эритроцитов содержат около восьми основных полипептидов [6]. Пять из них являются внешними и составляют 40 % общего содержания белка. Основным внутренним белком является гликофорин, один из немногих внутренних белков с установленной аминокислотной последовательностью (рис. 25.3.7) . В его молекуле несколько аминокислотных остатков связано с олигосахаридными фрагментами, которые в основном определяют антигенные и рецепторные свойства эритроцитов эти олигосахариды локализованы исключительно в Л -концевой части аминокислотной последовательности и находятся на внешней поверхности мембраны. Примечательна также высокая концентрация остатков дикарбоновых аминокислот в С-концевой последовательности. Однако наибольший интерес представляет участок между М- и <--концевыми последовательностями, содержащий около двадцати [c.121]

    Каким бы ни было происхождение этих пигментов, ясно, что масляные капли в сетчатке глаза птиц улучшают различение цветов при цветовом зрении. Различным образом окрашенные капли поглощают свет разных длин волн, так что рецепторной мембраны достигает тоже свет разных длин волн, где он и поглощается зрительным пигментом. Благодаря этому обеспечивается механизм различения цветов, который позволяет сильно сузить диапазон длин волн света, достигающего рецептора, II надежно разделить диапазоны чувствительности разных рецепторных клеток. [c.323]

    Второй уровень рецепторная мембрана [c.258]

    Фесенко и сотрудники исследовали мембраны клеток обонятельного эпителия и установили в них присутствие структур, обладающих высоким сродством к камфоре (лягушка, крыса) и к некоторым аминокислотам (скат). Специфичность взаимодействия с пахучим веществом, высокая константа связывания н отсутствие таких структур в других клетках указывают на наличие обонятельных рецепторных молекул. Обонятельный рецептор для камфоры — белок с м. м. около 125 ООО. [c.356]

    Установлено, что многие лекарственные вещества влияют на конформации мембран и мембранных липидов. Шанжё и соавторы рассматривали мембрану как упорядоченную кооперативную систему, построенную из взаимодействующих субъединиц. В этих работах триггерные свойства мембраны трактуются на основе теории, аналогичной теории косвенной кооперативности ферментов, развитой Моно, Уайменом и Шанжё (см. 6.7). Каждая субъединица имеет рецепторный центр для данного специфического лиганда, сродство к которому меняется при изменении ее конформации. В упорядоченной решетке мембраны субъединицы (протомеры) взаимодействуют со своими соседями, чем и определяются кооперативные свойства. В зависимости от активности лиганда и энергии взаимодействия протомеров ответ мембраны на присоединение лиганда может быть постепенным или S-образным, становясь в пределе переходом все или ничего — фазовым переходом. Формальная модель описывает действие колицинов, дает качественное объяснение ряду фактов, в частности, тому, что различные родственные лекарственные вещества вызывают различные максимальные ответы мембраны. Первичное действие многих лекарств локализовано в мембранах и имеет кооперативный характер. Многие лекарства действуют в очень малых концентрациях (вплоть до 10 М) и обладают высокой специфичностью. Воздействие лекарства иа мембранный рецептор определяется молекулярным узнаванием, но о природе этих рецепторов мы еще мало знаем (см. 11.7). [c.340]

    Л. широко используют в качестве модельных систем при изучении принципов мол. организации и механизмов функционирования биол. мембраи. Они пригодны для изучения пассивного транспорта ионов н малых молекул через липидный бислой. Изменяя состав липидов в Л., можно направленно менять св-ва мембран. Включением мембранных белков в липидный бислой получают т. наз. п р о т е о-липосомы, к-рые используют для моделирювания разнообразных ферментативных, транспортных и рецепторных ф-ций клеточных мембран. Л. используют также в иммунологич. исследованиях, вводя в них разл. антигены или ковалентно присоединяя к Л. антитела. Они представляют собой удобную модель для изучения действия на мембраны мн. лек. ср-в и др. биологически активных в-в. Во виутр. водный объем Л. (в т. ч. полимерных) можно включать лекарства, пептиды, белки и нуклеиновые к-ты, что создает возможность практич. примеиеиия Л. в качестве ср-ва доставки разных в-в в определенные органы н ткани. [c.604]


    Значительная часть наш их знаний о мембранах сложилась благодаря интенсивным многолетним исследованиям, проведенным на мембранах определенных типов. К их числу относятся следующие 1. Мие-линовая оболочка, состоящая из плазматических мембран, образуемых шванновскими клетками, которые прилежат ко многим нейронам. Шванновские клетки как бы наматываются на аксоны нейронов, причем цитоплазма из них выдавливается и образуются тонкие, но плотно упакованные мембранные слои, окружающие аксоны и служащие для них прекрасным изолятором . Из всех известных мембран миели-новые обладают наибольшей устойчивостью и содержат наибольшее количество липидов (80%). 2. Плазматические мембраны эритроцитов человека, которые могут быть получены путем осмотического шока этих клеток. Образующиеся при этом тени эритроцитов содержат около 1 % сухого вещества клетки по сравнению с другими мембранами они изучены, пожалуй, наиболее полно. 3. Мембраны б актерий, и в первую очередь Е. oli. 4. Наружный членик рецепторных клеток сет- [c.337]

    Никаких доказательств того, что процесс образования пятен и шапочки имеет какое-то отношение к стимуляции синтеза антител, не существует. Тем не менее зтот процесс интенсивно изучается, поскольку, возможно, полученные при зтом сведения помогут понять причины высокой подвижности связанных иммуноглобулинов и других рецепторов в клеточных мембранах. Существует предположение, чтО рецепторные молекулы (например, гликофорин) проходят через мембрану и связываются с цитоскелетом , образованным микрофиламента-ми и микротрубочками [97]. Рецептор, находясь в одном из состояний, должен быть свободным, чтобы диффундировать в плоскости мембраны с образованием пятен , зтот процесс не требует затраты знергии. В другом состоянии рецептор должен быть связан с микрофиламента-ми и микротрубочками, движения которых могли бы обеспечивать процесс образования шапочки , требующий знергии. В некоторых случаях инициация синтеза антител в лимфоцитах может происходить при связывании лектинов. Поскольку структура конканавалина А и характер его связывания с углеводными группами (разд. В 3) уже известны, мы надеемся, что исследование взаимодействия лектинов с клеточными поверхностями приблизит нас к пониманию сложных процессов, лежа щих в основе ответа на антиген [98, 99]. [c.386]

    Известны четыре разные формы гуанилатциклазы, три из которых являются мембраносвязанными и одна-растворимая открыта в цитозоле. Показано, что мембраносвязанные формы (мол. массой 180000) состоят из 3 участков рецепторного, локализованного на внешней поверхности плазматической мембраны внутрпмембранного домена и каталитического компонента, одинакового у разных форм фермента. Гуанилатциклаза открыта во многих органах (сердце, легкие, почки, надпочечники, эндотелий кишечника, сетчатка и др.), что свидетельствует о широком ее участии в регуляции внутриклеточного метаболизма, опосредованном через цГМФ. Мембраносвязанный фермент активируется через соответствующие рецеп- [c.294]

    Наружные сегменты палочек сетчатки позвоночных интенсивно иследовались с помощью дифракции рентгеновских лучей, электронной микроскопии и других современных методов. В результате было показано, что они содержат стопки мембранных дисков (рис. 9.7). Эти диски представляют собой структуры, состоящие пз двух слоев глобулярного белка (в основном это зрительный пигмент родопсин) и слоя липидов (главным образом фосфолипидов) между нимн. Родопсин составляет большую долю ( 85%) мембранного белка. Молекулы зрительного пигмента ориентированы в рецепторной мембране таким образом, что поглощение света, проходящего вдоль оси палочки, максимально. Была предложена модель, согласно которой молекулы зрительного пигмента могут латерально перемещаться в мембране и вращаться вокруг оси, перпендикулярной поверхности мембраны, причем любые другие перемещения исключены. По- [c.302]

    Все изученные к настоящему времени опсины, которые были выделены из сетчатки многих видов животных, представляют собой небольшие белки с мол. массой 30 ООО—40 000. Для опсинов, выделенных из палочек некоторых видов животных, был определен аминокислотный состав (но не последовательность аминокислот). Углеводная часть комплекса, состоящая из одного (или нескольких) остатка глюкозамина и маннозы, прочно связана с аспарагиновым остатком молекулы белка. С белком ассоциировано также значительное количество липидов, главным образом фосфатидилхолин и фосфатидилэтаноламин. Вопрос о том, связаны ли эти фосфолипиды со зрительным пигментом, составляя часть его молекулы, или они просто являются загрязнениями, попавшими из липидной области рецепторной мембраны, остается открытым. [c.306]

    Светофильтры из масляных капель. Прежде чем свет достигает фоторецепторной мембраны в сетчатке глаза, он должен пройти через внутренний сегмент рецепторной клетки. У некоторых пресмыкающихся и птиц эти сегменты содержат окрашенные масляные капли. Диаметр капель обычно та1сой же, как у фоточувствительных наружных сегментов, так что весь свет, прежде чем достигнуть зрительного пигмента, должен пройти через них. У цыплят в сетчатке содержатся рецепторные клетки шести типов, и масляные капли присутствуют в колбочках пяти типов. Идентифицированы красные, оранжевожелтые, лимонно-желтые и даже бесцветные, но поглощающие в УФ-свете масляные капли. Каждому из морфологических типов колбочек присущи свои капли. [c.322]

    Различные рецепторные клетки имеют выросты — антенны, плазматические мембраны которых содержат белки, специфические для данного вида рецепции. Антенны могут состоять из так называемых микровилл и являющихся результатами их диффе-ренцировки стереоциллий или киноциллий — ресничек, жгутиков и их производных. В эти образования входят фибриллярные белки. Жгутики обычно построены по принципу 9-2 + 2, т. е. имеют 9 пар фибрилл на периферии и одну в центре (см. 12.6). В других случаях структурный аппарат антенн представлен формулой 9-2 + 0. [c.355]

    Высокая чувствительность обонятельных рецепторов показывает, что запах переносится молекулами. Пороговые концентрации пахучих веществ, воспринимаемых человеком, составляют 4 -10 для скатола, 4,4 - 10 для этилмеркаптана и 5 - 10 мг/л для тринитробутилтолуола. Пахучее вещество должно быть достаточно летучим и растворяться в воде и в липидах — рецепторные клетки находятся в слизистом, водном окруч ении и вещество должно проникать сквозь мембраны. [c.355]

    В постсинаптической мембране мионевральпого соединения установлена высокая концентрация ацетилхолинэстерааы (АХЭ) — фермента, катализирующего гидролиз АХ. Показано, что рецепторным веществом является специальный гидрофобный белок. Этот белок был выделен из мембран нервных окончаний. Он имеет большое сродство к АХ и к другим холинэргическим веществам. Де Робертис предложил модель постсинаптической мембраны (рис. 11.22). В мембрану включены дискретные рецепторные [c.382]

    Примеры известных веществ-медиаторов четко идентифицированы амины ацетилхолин, допамин, норадреналин и серотонин (5-НТ) менее четко — аминокислоты у-аминомасляная (GABA), глутаминовая и глицин предполагаемые медиаторы или нейромодуляторы — гистамин, пуриновые нуклеотиды, энкефалины и другие нейропептиды. Объектом действия является рецепторный белок в постсинаптической мембране (иногда также и в пресинаптической мембране), и механизм действия состоит в изменении ионной проводимости возбудимой мембраны  [c.238]

    Кроме эндогенных имеются и другие факторы, которые влияют на текучесть липидного матрикса. Многочисленные нейротокси-вы и нейротропные лекарства действуют на нервную мембрану (гл. 6, 8, 9), причем некоторые из них связываются со специфическими или рецепторными участками, а другие оказывают кеспецифическое действие на общие свойства мембраны. К числу последних относятся, например, местные анестетики. [c.73]

    Выяснив электрические свойства клетки в состоянии покоя, рассмотрим процессы, связанные с возбуждением мембраны. Состояние возбуждения можно определить как временное отклонение мембранного потенциала от потенциала покоя, вызванное внешним стимулом. Этот электрический или химический стимул возбуждает мембрану, изменяя ее ионную проводимость, т. е. сопротивление в контуре снижается (рис. 5.4). Возбуждение распространяется от стимулированного участка к близлежащим областям мембраны, в которых наблюдается изменение проводимости, а следовательно, и потенциала. Такое распространение (генерация) возбуждения называется импульсом. Различаются два типа импульсов потенциал действия, когда сигнал распространяется неизмененным от участка возбуждения к нервному окончанию, и локальный потенциал,. быстро уменьшающийся по мере удаления от участка возбуждения. Локальные потенциалы обнаружены в синапсах воз-буждающие постсинаптические потенциалы (е. р. з. р.) и ингибиторные постсинаптические потенциалы ( . р.з.р.)) и в сенсорных нервных окончаниях рецепторные или генераторные потенциалы). Локальные потенциалы могут суммироваться, т. е. они могут увеличиваться при последующих возбуждениях, тогда как потенциалы действия не обладают такой способностью-и возникают по принципу все или ничего . [c.115]

    Наличие конформационных изменений рецепторного белка было доказано тем, что после связывания лиганда менялась флуоресценция остатков триптофана. Наблюдались также фосфорилирование и дефосфорилирование белков иостсинаптиче-ской мембраны (холинэргической и др.). Однако корреляцию наблюдаемых конформационных изменений или реакций фос- [c.204]

    Подобно ацетилхолину, катехоламины высвобождаются из пресинаптической мембраны посредством экзоцитоза и связываются постсинаптически с рецепторными белками. Эти рецепторы, видимо, не связаны непосредственно с ионными каналами, как в случае никотиновых ацетилхолиновых рецепторов, а вместо этого взаимодействуют с ферментом аденилатциклазой, продукт которой, вторичный мессенджер сАМР, в дополнение к другим своим функциям опосредованно регулирует ионную проницаемость постсинаптической мембраны. Такое взаимодействие с рецептором может носить либо активирующий, либо ингибиторный характер, что приводит к увеличению или снижению концентрации сАМР в клетке-мишени. [c.220]

    Рис, 9.7. Три уровня исследования рецептора. В качестве примера был выбра никотиновый ацетилхолиновый рецептор из электропластинки электрического угря, а — электрофизиологическое изучение интактной клетки препарата, предложенного Нахманзоном и Шоффениелсом б — исследование функций рецептора (связывания лиганда и выход меченого натрия по методу Касай и Шаи же) с использованием везикулярных фрагментов постсинаптической мембраны , в — изучение связывания лиганда L с очищенным рецепторным белком. [c.258]

    Ацетилхолиновый рецептор регулирует ионную проницаемость постсинаптической мембраны, вероятно, посредством кон-формацпонного изменения рецепторного белка. Данные о конформационных изменениях после связывания лиганда были получены Путем измерения внутренней (триптофан) и внешней флуоресценции (в последнем случае может быть использован в качестве флуоресцентной репортерной группы местный анестетик хинакрин см. рис. 8.11). [c.263]

    Взаимодействие гормонов с рецепторами. Для реализации биологического действия гормона необходимо узнавание его клеткой-мишенью, т. е. наличие у иее структур, специфически связывающих данный гормон. Компонент клетки, узнающий гормон и передающий информацию о взаимодействии с ним, называют рецептором. Рецепторы должны обладать большим сродством к гормону (константы ассоциации для большинства гормон-рецепторных взаимодействий составляют величины порядка 10 —Ю М а само взаимодействие должно осуществляться быстро и высокоспеци-фнчно. Кроме того, поскольку белковые гор С оны ие способны свободно пересекать клеточную мембрану, их рецепторы должны быть компонентами плазматической мембраны клеток, локализованными на ее внешней поверхности. Наконец, при связывании гормона рецептор должен обеспечить передачу гормонального сигнала клетке. [c.239]


Смотреть страницы где упоминается термин Мембраны рецепторные: [c.314]    [c.316]    [c.352]    [c.190]    [c.222]    [c.348]    [c.247]    [c.124]    [c.531]    [c.300]    [c.324]    [c.383]    [c.16]    [c.205]    [c.367]    [c.367]    [c.35]    [c.166]    [c.306]   
Структура и функции мембран (1988) -- [ c.62 , c.66 ]




ПОИСК







© 2025 chem21.info Реклама на сайте