Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие свойства мембран

    По своей химической природе рецепторы почти всех биологически активных веществ оказались гликопротеинами, причем узнающий домен (участок) рецептора направлен в сторону межклеточного пространства, в то время как участок, ответственный за сопряжение рецептора с эффекторной системой (с ферментом, в частности), находится внутри (в толще) плазматической мембраны. Общим свойством всех рецепторов является их высокая специфичность по отношению к одному определенному гормону (с константой сродства от 0,1 до 10 нМ). Известно также, что сопряжение рецептора с эффекторными системами осуществляется через так называемый С-белок, функция которого заключается в обеспечении многократного проведения гормонального сигнала на уровне плазматической мемб- [c.289]


    Транспорт компонента разделяемой газовой смеси через пористую основу мембраны осуществляется одновременно несколькими механизмами переноса, в зависимости от структуры матрицы, свойств веществ и термодинамических параметров процесса. В общем случае движение компонентов смеси может вызываться конвективно-фильтрационным переносом, различного вида скольжениями вдоль поверхности пор, объемной диффузией, баро- и термодиффузией, кнудсеновской диффузией (эффузией), поверхностной диффузией, пленочным течением вследствии градиента расклинивающего давления, капиллярным переносом конденсированной фазы в анизотропных структурах. Вещество в порах скелета мембраны, как показано ранее, может находиться в виде объемной газовой фазы, капиллярной жидкости и адсорбированной пленки. Для каждого из этих состояний возможно несколько механизмов переноса, взаимосвязанных между собой. Не все виды переноса равнозначны по своему вкладу в результирующий поток веществу, поэтому при вычислении коэффициента проницаемости необходимо определить условия, при которых те или иные формы движения вещества являются доминирующими [З, 9, 10, 14—16]. [c.54]

    Таким образом, структурно-морфологические свойства мембраны, существенные для процесса разделения, в наиболее общей форме характеризуются долей непроницаемой дисперсной фазы и относительным свободным объемом в аморфной фазе. Предельные случаи соответствуют кристаллической структуре и высокоэластичному состоянию полимеров при температуре выше температуры стеклования. [c.72]

    Скорость гемодиализа существенно зависит от свойств используемых мембран. Наиболее важными показателями являются пористость — отношение площади пор к общей площади мембраны, толщина мембраны и природы материала. [c.20]

    Помимо явлений, связанных с зависимостью давления пара над раствором от концентрации раствора, к общим свойствам растворов относят также осмос. При исследовании явления осмоса широко используются полупроницаемые перегородки (мембраны и диафрагмы). Характерная их особенность заключается в способности пропускать молекулы растворителя, но задерживать частицы растворенного вещества. Исключительно важную роль полупроницаемые перегородки играют в процессах жизнедеятельности организмов. [c.151]


    Белки перемещаются в плоскости мембраны. Объемное антитело, присоединенное к наружной части Са -транспортирующей АТРазы, не препятствует перемещению ионов кальция, что указывает на то, что для транслокации Са + не требуется поворота белка вокруг оси, параллельной поверхности мембраны [707]. По-видимому, это общее правило для мембранных белков. С другой стороны, белки способны поворачиваться [708] и перемещаться в боковых направлениях в пределах плоскости мембран реальная степень подвижности зависит от физико-химических свойств мембраны и от направляющего действия белковых контактов с обеими поверхностями мембраны. Диффузия по горизонтали важна для взаимодействий между элементами многокомпонентной, связанной с мембраной системы, поскольку функционально связанные мембранные белки не всегда находятся в физическом контакте друг с другом [709, 710]. [c.268]

    V зависят от свойств молекулы, подвергаемой диализу. Фактор извилистости h меняется в зависимости от направления и формы капилляров мембраны. Совершенно не обязательно, чтобы Этот фактор оставался одним и тем же у мембран, изготовленных из одинакового материала, если толщина их разная. Подвергаемая диализу молекула, например молекула каустической соды, влияет как на толщину мембраны в набухшем состоянии, так и на извилистость пор. При проведении опытов по определению требуемых свойств мембраны общий коэффициент переноса в пленках Ui существенно уменьшают путем интенсивного перемешивания или принимают согласно уравнению (IX-60). [c.626]

    Общие свойства. Устойчивость. В растворах высокомолекулярных соединений (белков, нуклеиновых кислот, полисахаридов, каучука и других веществ) каждая взвешенная частица представляет собой не мицеллу, а макромолекулу, размер которой 10 —см. Имея молекулярную или ионную дисперсность и будучи гомогенными, растворы высокомолекулярных соединений являются истинными растворами. Близость размеров макромолекул и частиц дисперсных систем объясняет наличие у них некоторых общих свойств. Так, например, частицы высокомолекулярных соединений не проходят через диализа-ционные мембраны, имеют сравнительно небольшую скорость диффузии, способны под влиянием внешних факторов осаждаться из раствора, рассеивать свет и т. п. Таким образом, растворы высокомолекулярных соединений обладают рядом свойств, характерных как для истинных растворов, так и для коллоидных систем. Кроме того, они обладают рядом специфических свойств. [c.113]

    Мембрана способна пропускать один компонент быстрее другого из-за различий физических и (или) химических свойств мембраны и компонентов разделяемой смеси. Транспорт через мембрану является результатом воздействия движущих сил на индивидуальный компонент в исходной смеси. В общем случае движущей силой переноса веществ через мем- [c.574]

    Общие свойства мембран. Мембраны представляют собой плоскую структуру толщиной в 2-3 молекулы, образующую сплошную перегородку, состоящую из липидов и белков в соотношении от 1 4 до 4 1. Существуют также углеводы, связанные с липидами и белками. Липиды мембран — это относительно небольшие молекулы, имеющие гидрофобные и гидрофильные группы. Белки мембран выпол- [c.100]

    Общие свойства. В основе функционирования Бр как протонной помпы лежит его способность за счет энергии света переносить протоны с цитоплазматической на внешнюю сторону клеточной мембраны. [c.393]

    Хотя мембрана дендритов и тела большинства нейронов богата рецепторными белками, она содержит очень мало потенциал-зависимых натриевых каналов и поэтому относительно невозбудима. Одиночные ПСП, как правило, не приводят к возникновению потенциала действия. Каждый пришедший сигнал точно отображается величиной градуального ПСП, которая уменьшается по мере удаления от входного синапса. Если сигналы одновременно приходят к синапсам, находящимся на одном и том же участке дендритного дерева, то общий ПСП будет близок к сумме индивидуальных ПСП, причем тормозные ПСП будут учитываться с отрицательным знаком В то же время суммарное электрическое возмущение, возникшее в одном постсинаптическом участке, будет распространяться на другие участки благодаря пассивным кабельным свойствам мембраны дендрита. [c.320]

    Эти н другие механизмы на молекулярном уровне будут рассмотрены в остальных главах данной части (гл. 12—17). Здесь же мы укажем, что все они обладают общим свойством создавать в конечном счете движение ионов, которое деполяризует мем брану, как показано стрелками, на рис. 11.2 при этом меняется заряд мембраны, и возникающее изменение мембранного потенциала называется рецепторным потенциалом. Его механизм в принципе сходен с механизмом синаптического потенциала (см. гл. 8). [c.272]

    Общим свойством всех энергопреобразующих мембран является их очень низкая проницаемость. Следовательно, мембранные структуры, имеющие большие поры и осуществляющие транспорт больших молекул ( например, ядерная мембрана или внешняя мембрана митохондрий, внешняя мембрана бактериальных клеток), не могут быть энергопреобразующ ими, так как на них, в силу наличия специальных пор, не может быть создан градиент ионов. [c.119]


    Поверхностные мембраны всех раковых клеток обладают некоторыми общими свойствами и значительно отличаются от мембран нормальных клеток. В частности  [c.253]

    Специфические взаимодействия между белками и липидами должны определять основные особенности структуры и свойств мембраны. Исходя из общих соображений о нековалентных взаимодействиях, можно с полной уверенностью сказать, что гидрофобные хвосты липидных молекул должны охотно взаимодействовать с неполярными боковыми цепями аминокислот, а полярные головки — с полярными частями белковых молекул. Однако существенные детали этих взаимодействий еще остаются невыясненными. Перечислим несколько вопросов, исследование которых только начинается. [c.230]

    Пример проявления свойств М-элемента в ФХС представлен на рис. 1.6. Электрохимическая система, изображенная на рис. 1.6, представляет электролитическую ванну с двумя электродами и двумя противоположно заряженными мембранами [17]. При прохождении электрического тока э = / под действием напряжения щ = е мембраны препятствуют движению ионов с зарядом того же знака, поэтому концентрация электролита в межмембранной области возрастает или убывает в зависимости от направления тока. Так как электрическая проводимость падает с уменьшением концентрации ионов, то внутреннее сопротивление зависит от общего количества прошедшего через систему тока. Концентрация (а следовательно, и сопротивление) будет непрерывно изме- [c.34]

    В то время как микрофильтрация, ультрафильтрация и обратный осмос — более или менее сходные процессы, газоразделение, первапорация и диализ достаточно сильно отличаются друг от друга. Основное общее свойство последних трех процессов — использование в них непористых мембран. Заметим, что термин непористые не несет информации о проницаемости. В гл. II было показано, что проницаемость газа через высокоэластический или стеклообразный материал может различаться более чем на пять порядков, хотя оба материала относятся к непористым. Такая большая разница связана с особенностями сегментальной подвижности, которая в стеклообразном состоянии чрезвычайно затруднена. Присутствие кристаллитов может дополнительно снижать подвижность сегментов. Присутствие низкомолекулярных пенетрантов, как правило, увеличивает сегментальную подвижность и подвижность цепей. С увеличением концентрации пенетрантов (газа или жидкости) внутри полимерной мембраны растет подвижность цепей и, как следствие, увеличивается проницаемость (или коэффициент диффузии). Концентрация пенетранта внутри полимерной мембраны определяется по большей части сродством между пенетрантом и полимером. [c.308]

    Поскольку 1 мкм = 10 нм , следовательно, на Na -каналы приходится 0,3% поверхности плазматической мембраны. Этот результат дает представление о том, сколь малая доля общей клеточной мембраны должна быть занята ионными каналами, имеющими ворота, чтобы клетка проявляла свойство возбудимости. [c.327]

    Возвращаясь к трехслойной задаче (6.20)-(6.30), заметим, что вся информация о свойствах мембраны содержится в коэффициентах проводимости Ц = Ц (звездочка обозначает, что величина относится к неоднородной мембране). Ц являются функциями локальной концентрации ионов в виртуальном растворе и, следовательно, в общем случае функциями 274 [c.274]

    Такие изменения, известные давно на основании общих соображений и качественных экспериментов, весьма существенны для разработки учения о граничных слоях с измененной структурой вблизи твердой поверхности. Это учение, развиваемое в трудах Дерягина и его школы, а также других ученых, на основе строгой теории и количественных экспериментов приобрело в настоящее время огромное значение для рещения многих вопросов устойчивости дисперсных систем, течения жидкостей через пористые тела и мембраны и др. Конечно, вряд ли можно отождествлять эти пленки с граничными слоями, переходящими в объемную фазу воды и Не имеющими границ раздела с паром , но изучение их свойств важно в качестве моделей, поскольку основную роль в образовании особой структуры играет, по-видимому, твердая подложка. Причиной этих особенностей структуры следует считать вандерваальсовы силы, электростатические силы и силы водородной связи между молекулами жидкости и поверхностными атомами и молекулами твердой фазы. [c.104]

    Мембраны эритроцитов содержат около восьми основных полипептидов [6]. Пять из них являются внешними и составляют 40 % общего содержания белка. Основным внутренним белком является гликофорин, один из немногих внутренних белков с установленной аминокислотной последовательностью (рис. 25.3.7) . В его молекуле несколько аминокислотных остатков связано с олигосахаридными фрагментами, которые в основном определяют антигенные и рецепторные свойства эритроцитов эти олигосахариды локализованы исключительно в Л -концевой части аминокислотной последовательности и находятся на внешней поверхности мембраны. Примечательна также высокая концентрация остатков дикарбоновых аминокислот в С-концевой последовательности. Однако наибольший интерес представляет участок между М- и <--концевыми последовательностями, содержащий около двадцати [c.121]

    В типичном эксперименте с мечеными соединениями в биологическую систему вводится некое постороннее (экзогенное) вещество. При этом предполагается, что его молекулы будут вступать в те же самые реакции, что и некоторое продуцируемое системой (эндогенное) вещество, участвующее в биосинтезе исследуемого соединения. Для этого эндогенный и экзогенный субстраты должны стать биологически идентичными, причем это требование относится как к природе, так и к количеству меченого соединения. Например, к культуре плесени добавляют следовые количества ацетата натрия ацетат-ион (или уксусная кислота) должен быть усвоен клетками без заметного нарушения связанных с энергетическими затратами механизмов транспорта через клеточные мембраны и далее превращен внутри клетки в ацетил-кофермент А без значительных изменений концентраций веществ, требующихся для осуществления этих реакций (АТР, кофермент А), или продуктов превращений (ADP, ацетилкофермент А). Наконец, получившийся таким образом ацетилкофермент А должен полностью перемешаться с ацетилкоферментом А, образовавшимся в клетке несколькими совершенно другими путями, с тем чтобы степень его участия в биосинтезе поликетидов была пропорциональна его доле в общем фонде ацетил-КоА. Кроме того, должен быть метод, позволяющий отличить меченый компонент от эндогенного продукта биосинтеза, например, путем измерения уровня радиоактивности, если экзогенный ацетат частично содержал С или Н. В конечном счете одни нз перечисленных выше требований несовместимы с другими результаты эксперимента можно интерпретировать только при допущении, что свойства возмущенной системы идентичны свойствам ее невозмущенного состояния. При этом еще предполагается, что наблюдатель способен фиксировать изменение свойств биологической системы точнее, чем сама эта система. [c.466]

    Согласно общей групповой классификации методов разделения, основанной на принципах фазовых превращений и межфазных переходов, третья группа включает методы, в которых разделение достигается за счет различных свойств, проявляемых веществами при их индуцированном, т.е. вызванном воздействием каких-либо сил, переносе из одной фазы в другую через разделяющую их третью фазу. Промежуточная фаза является перегородкой между двумя первыми шш мембраной мембрана в переводе с латинского и означает перепонка) соответственно методы разделения, происходящего в этой фазе, называются мембранными. Как и в двух предыдущих случаях, основным критерием внутригрупповой классификации является агрегатное состояние фаз, участвующих в процессе разделения. Специфическим классификационным признаком для этой группы является движущая сила процесса межфазного переноса веществ (таблица 3.71). [c.214]

    Кроме эндогенных имеются и другие факторы, которые влияют на текучесть липидного матрикса. Многочисленные нейротокси-вы и нейротропные лекарства действуют на нервную мембрану (гл. 6, 8, 9), причем некоторые из них связываются со специфическими или рецепторными участками, а другие оказывают кеспецифическое действие на общие свойства мембраны. К числу последних относятся, например, местные анестетики. [c.73]

    Разрабатываются удобрения замедленного действия, которые не надо часто вносить в почву, что способствует значительной экономии рабочей силы, а также технология концентрированных жидких удобрений (ЖКУ) из фосфатного сырья, доля которых должна составить 30% от общего производства фосфорсодержащих удобрений начато производство удобрений пролонгированного действия, т. е. постепенного длительного использования. Их производство может быть осуществлено двумя путями а) полимеризацией концентрированных азотных удобрений (мочевина) с компонентом, разрушаемым микробами — с формальдегидом (карбамиддиформальдегид-ное удобрение) б) намечается создать технологию кап сулирования гранул сложных удобрений пленкой, обладающей свойствами мембраны. [c.165]

    Возникновение потенциала асимметрии возможно при химических воздействиях на поверхность электрода (протравливание щелочами или плавиковой кислотой), механических повреждениях (стачивание, шлифование), адсорбции жиров, белков и других поверхностно-активных веществ. К наиболее важным причинам возникновения потенциала асимметрии относится изменение сорбционной способности стекла по отношению к воде при термической обработке в процессе изготовления электрода. Некоторый вклад вносит дегидратация набухшего поверхностного слоя (высушивание или выдерживание в дегидратирующем растворе). Возникновению потенциала асимметрии способствует неодинаковое напряжение на двух сторонах стеклянной мембраны. Если пустсЛ-ы кремнийкислородной решетки на одной ее поверхности отличаются по форме от пустот на другой поверхности, то нарушается равновесие переноса ионов между стеклом и раствором и возникает потенциал асимметрии. В общем, любое воздействие, способное изменить состав или ионообменные свойства мембраны, влияет на потенциал асимметрии стеклянного электрода и может привести к ошибкам в измерениях pH. Мешающее действие потенциала асимметрии компенсирзтот при настройке рН-метров по стандартным буферным растворам, имеющим постоянную и точно известную концентрацию ионов водорода. [c.188]

    Клеточное строение растительных тканей открыто английским физиком Гуком, который в 1665 г. зарисовал напоминающую пчелиные соты сетчатую структуру ткани коры пробкового дерева. Нидерландский натуралист Левенгук (1628—1723 гг.), которому часто приписывают изобретение микроскопа, впервые наблюдал под микроскопом эритроциты, инфузории и сперматозоиды. В 1848 г. Дюбуа-Реймон высказал мысль, что поверхность клетки имеет общие свойства с электродом в гальванической ячейке, а Оствальд, Нернст и Бернштейн в конце XIX в. предположили, что клетки окружены полупроницаемой мембраной со специфическими электрическими свойствами. Это утверждение оставалось лишь смелой гипотезой до 1925 г., когда Гортер и Грендел из липидов эритроцитов разного происхождения сформировали монослой на границе раздела вода — воздух. Оказалось, что в монослоях липиды занимают площадь, примерно вдвое большую общей поверхности клеток. Это указывало на то, что внешняя оболочка клеток образована бимолекулярным слоем липидов, в первую очередь фосфолипидов — эфиров глицерина, жирных кислот и фосфорной кислоты. Позднее было установлено, что вообще все клетки животных окружены тонкой мембраной, состоящей всего лишь из двух слоев молекул. Электронно-микроскопические исследования окончательно подтвердили этот вывод. Строение клеток растений оказалось более сложным. Их клетки, помимо клеточной мембраны, непосредственно окружа- [c.179]

    Жидкомозаичная модель мембраны — это, однако, не более чем просто схематическое изображение, всего лишь рабочая гипотеза. В этой книге, как и в других учебных изданиях, приведено довольно много моделей, что, вообще говоря, не очень по душе автору. На моделях кажется все понятным они выглядят вполне правдоподобными и именно это может легко увести читателя от понимания того факта, что ценность моделей весьма относительна и временна. Любой хорошо поставленный эксперимент может их модифицировать или оспорить. Использование модели в учебнике может создать ложное представление надежности там, где это далеко еще не устоявшаяся теория, а слепое следование ей (idee fixe) может затруднить обсуждение экспериментальной проверки теории. Еще одна опасность заключается в том, что модели обычно излишне обобщены здесь они могут чрезмерно подчеркивать общие свойства самых разных мембран, затемняя тем самым различия, которые могут быть важными для понимания их специфических функций. [c.70]

    Влияние отдельных липидов на свойства мембраны описать нелегко. В общем можно только сказать, что текучесть биологических мембран определяется тем- пературой фазового перехода от- дельных липидов. Факторы, увели-лщитш Ш в ющие текучесть (см. выше), [c.72]

    Для создания электродов с жидкими мембранами использовали многие органические вещества, либо чистые, либо в подходящем растворителе (см. соответствующие разделы, посвященные отдельным катионо- или анионоселективным электродам). Общее свойство всех этих соединений — способность селективно связывать некоторые небольшого размера ионы, образуя нейтральные ионогенные группы с ионами противоположного знака заряда (в жидком ионообменнике) или заряженные комплексы с нейтральными группами органической природы. Жидкие мембраны, как правило, разделяют две водные фазы. На границе между мембраной и раствором происходит быстрый обмен между свободными ионами в растворе и ионами, связанными органическими группами в фазе мембраны. Селективность электрода в первую очередь зависит от избирательности этого ионообменного процесса. [c.213]

    Очень много сведений о свойствах мембраны дало изучение проникновения разных веществ в клетку. Это особый, весьма увлекательный и весьма запутанный рассказ, который мы не можем тут привести. Но общий вывод из него весьма поучителен. Дело в том, что, как сейчас выяснено, разные вещества попадают в клетку разными способами одни, растворяясь в жирах мембраны, проникают в клетку прямо через них, другие вещества, которые не могут проходить через жиры (наприоиер, ионы), проникают через особые поры , образованные мембранными белками, третьи — совсем иначе, например, заглатываясь клеткой, в которой образуется отшнуровывающийся и уходящий внутрь мембранный пузырек и это еще не все способы. Между тем ученые стараются объяснить некоторое явление (например, проникновение веществ в клетку) с единой точки зрения. Для науки идеалом является, например, теория Максвелла, которая позволила связать воедино электрические, магнитные и оптические явления, описав их основные свойства несколькими уравнениями. Такую же единую теорию искали и ученые, изучавшие клеточную проницаемость. Однако, как мы теперь понимаем, в случае клеточной проницаемости такой единой теории просто не существовало. При наличии многих принципиально различных способов проникновения веществ в клетку для каждой теории, претендующей на полное объяснение фактов с единой точки зрения, находился опровергающий ее эксперимент. Мы ун е сталкивались с аналогичной ситуацией вспомните, как Вольта пытался объяснить с единой точки зрения и контактную разность потенциалов, и работу химических элементов. Так, естественное стремление ученого к созданию единой теории иногда играет роль тормоза в развитии науки. Но вернемся к мембране. [c.71]

    Кооффициеггт расширения волокпа к — отношение диаметров широкой и узкой частей,— при котором происходит блокировка импульса, будем называть критическим расширением /сц- Выше указывалось, что для волокпа с параметрами аксона кальмара критическое расширение / о - 5,5. Одпако в общем случае свойства мембраны разных волокон могут различаться. Поэтому и значения к будут различны для разных состояний мембраны (см. 3). [c.27]

    Общим свойством АТФаз первого типа является способность образовывать ковалентный фосфорилированный интермедиат (Р), участвующий в реакционном цикле. К АТФазам этого типа относятся Ыа,К-АТФаза, Са-АТФаза и Н-АТФаза плазматической мембраны эукариотических клеток и Са-АТФаза эндо (сарко) плазматического ретикулума. К-АТФаза наружной мембраны прокариот ( . соИ, Strepto o us fae alis) также относится к этому типу. [c.110]

    Мембранное разделение газовых смесей основано на действии особого рода барьеров, обладающих свойством селективной проницаемости компонентов газовой смеси. Обычно мембрана представляет собой жесткую селективно-проницаемую перегородку, разделяющую массообменный аппарат на две рабочие зоны, в которых поддерживают различные давления и составы разделяемой смеси. В общем случае понятие мембраны не обязательно связано с существованием такой перегородки и перепадом давления. В широком смысле под мембраной следует понимать открытую неравновесную систему, на границах которой поддерживаются различные составы разделяемой смеси под действием извне полей различной природы (ими могут быть поля температуры и давления, гравитационное и электромагнитное поле, поле центробежных сил). Разделительная способность такой системы формируется комплексом свойств матрицы мембраны и компонентов разделяемой смеси, их взаимодействием между собой. Существенна и степень неравновесностн такой системы. [c.10]

    При сопоставлении ультрафильтрации, обратного осмоса и фильтрования можно отметить, что они определяются общим законом, в соответствии с которым скорость процесса пропорциональная движущей силе и обратно пропор-цпональна сопротивлению. Для упомянутых процессов движущей силой является разность давлений по обеим сторонам мембраны (в первом приближении) или перегородки, а сопротивление зависит от свойств последних, а также от характеристик разделяемой системы и условий разделения. [c.83]

    Практически общий способ трансформации и трансфекции основан на том, что при обработке клеток бактерий a l2 их мембрана становится проницаемой для ДНК. Однако эффективность проникновения экзогенной ДНК в клетку довольно низка. Поэтому среди бактерий, подвергшихся трансформации, только небольшая часть оказывается трансформированной. Отделение ее от общей массы осуществляется в процессе клонирования. Для клонирования бактериальную суспензию определенной концентрации выливают на твердую питательную среду, например на агар с питательными добавками в чашке Петри из расчета 5—10 бактерий на 1 см поверхности. Бактериальная клетка на поверхности агара начинает делиться с образованием в итоге маленькой колонии, похожей на шляпку гриба. Эта колония называется клоном, причем из каждой клетки образуется свой клон, все клетки которого имеют свойства бактерии-родоначальника. [c.121]

    Температура оказывает существенное влияние на механические свойства материалов и, следователшо, на давление срабатывания мембран (см. рис. 12). С повышением температуры увеличиваются также скорость коррозии и ползучесть металла. Все это приводит к значительному влиянию температуры на срок службы мембран. Для мембран из различных материалов установлены предельные значения температур, приведенные в табл. 8. Необходимо помнить, что в данном случае подразумевается температура самой мембраны, которая в общем случае не равна температуре среды в защищаемом аппарате. Это овязано с тем, что мембрана устанавливается на штуцере аппарата, и поэтому около нее всегда имеется застойная зона. Кроме того, мембрана одной своей стороной контактирует с полостью аппарата, а другой — с окружающей средой или с полостью сбросного трубопровода. Все это необходимо учитывать при оценке значения рабочей температуры мембраны. Более того, температурный режим мембраны можно изменять искусственно, применяя различные устройства теплоизоляции или, наоборот, интенсифицирующие теплообмен. [c.39]


Смотреть страницы где упоминается термин Общие свойства мембран: [c.357]    [c.105]    [c.430]    [c.322]    [c.456]    [c.88]    [c.213]    [c.19]   
Смотреть главы в:

Начало биохимии -> Общие свойства мембран




ПОИСК







© 2025 chem21.info Реклама на сайте