Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митохондрия ионами

    Кроме того, установлено, что Хр внутренней части клетки приблизительно в два раза меньше внешней среды для обоих образцов. Это означает, что клетки митохондрий способны регулировать свою внутреннюю концентрацию ионов пропорционально их содержанию во внешней среде. [c.385]

    Железо функционирует как основной переносчик электронов в биологических реакциях окисления — восстановления [231]. Ионы железа, и Fe +, и Fe +, присутствуют в человеческом организме и, действуя как переносчики электронов, постоянно переходят из одного состояния окисления в другое. Это можно проиллюстрировать на примере цитохромов . Ионы железа также служат для транспорта и хранения молекулярного кислорода — функция, необходимая для жизнедеятельности всех позвоночных животных. В этой системе работает только Ре(П) [Fe(111)-гемоглобин не участвует в переносе кислорода]. Чтобы удовлетворить потребности метаболических процессов в кислороде, большинство животных имеет жидкость, циркулирующую по телу эта жидкость и переносит кислород, поглощая его из внешнего источника, в митохондрии тканей. Здесь он необходим для дыхательной цепи, чтобы обеспечивать окислительное фосфорилирование и производство АТР. Одиако растворимость кислорода в воде слишком низка для поддержания дыхания у живых существ. Поэтому в состав крови обычно входят белки, которые обратимо связывают кислород. Эти белковые молекулы способствуют проникновению кислорода в мышцы (ткани), а также могут служить хранилищем кислорода. [c.359]


    Солюбилизация внешней и внутренней мембраны митохондрий различными ионными и неионными детергентами. [c.413]

    Получают митохондрии печени крысы согласно описанию на с. 406. В кювету с постоянным перемещиванием, содержащую 3 мл среды инкубации, помещают К+ Чувствительный электрод и, установив перо самописца на середину шкалы, калибруют чувствительность прибора внесением 4—6 добавок раствора КС1 с точно известной концентрацией (по 20—30 мкМ). В другой пробе в среду инкубации вносят суспензию митохондрий (3—5 мг белка на 1 мл пробы), 5 мкМ ротенон и регистрируют в течение 1—2 мин концентрацию К+ во внешней среде. В пробу добавляют валиномицин (около 0,1 нмоль на 1 мг белка), измеряют концентрацию ионов К+ во внешней среде и рассчитывают скорость его диффузии в стационарном состоянии. Внесением 2,4-динитрофенола (100 мкМ) индуцируют выход ионов К+ во внешнюю среду. Содержание эндогенного К+ в митохондриях определяют добавлением к суспензии митохондрий в среде инкубации раствора детергента (тритон-Х-100) до конечной концентрации 0,1%- Изменения концентрации К+ в среде рассчитывают по калибровочной кривой. [c.444]

    Изучение зависимости проницаемости мембраны митохондрий для ионов К+ от pH. [c.444]

    Цель настоящей работы — выявление проникающей через внутреннюю мембрану митохондрий формы ряда неорганических и органических анионов с использованием осмотического метода (с. 446). Осмотическое поведение митохондрий зависит не от состава наружного раствора, а от способности входящих в его состав веществ проникать в митохондрии. При помещении митохондрий в изоосмотические растворы солей различных анионов с проникающими катионами (NH4+ или К+ в присутствии валиномицина) по изменению величины оптической плотности можно судить о проницаемости мембраны для данного аниона. В качестве точки отсчета можно использовать величину оптической плотности суспензии митохондрий в изотоническом растворе КС1 (митохондриальная мембрана практически непроницаема для ионов К+ и С1-). [c.447]

    АКТИВНЫИ ТРАНСПОРТ ИОНОВ a=+ В МИТОХОНДРИЯХ ПЕЧЕНИ [c.449]

    Митохондрии активно транспортируют ионы и некоторых других двувалентных металлов. Добавление Са + (200—300 нмоль/мг белка) к аэробной суспензии митохондрий в присутствии субстрата окисления вызывает стимуляцию дыхания. Когда практически весь добавленный Са + окажется во внутреннем пространстве митохондрий, скорость потребления кислорода возвращается к исходному уровню (конт- [c.450]


    Интересным свойством этой системы является то, что небольшие количества Са + не только резко ускоряют поглощение ионов М.п + в митохондриях, но и существенно изменяют ее кинетическое поведение при взаимодействии с Мп + в качестве субстрата. Это явление получило новое объяснение после того, как было показано, что Са служит не только субстратом рассматриваемой транспортной системы, но и с высокой эффективностью регулирует ее активность. [c.454]

    В кювету рН-метра со средой, содержащей 10 мМ сукцинат и 5 мкМ ротенон, в которую погружены электроды, добавляют порцию митохондрий (3—4 мг белка) и регистрируют стационарную концентрацию ионов Н+. Через 1 мин (когда вызванные добавлением митохондрий изменения pH среды прекратятся) в кювету добавляют 20 мкМ Са + и регистрируют закисление среды до нового стационарного значения pH. После этого в кювету добавляют 1—2 раза 50— 100 мкМ НС1 или КОН для калибровки шкалы. Проводят серию ана- [c.454]

    НАКОПЛЕНИЕ ИОНОВ Mg2+ МИТОХОНДРИЯМИ СЕРДЕЧНОЙ [c.455]

    В обычных условиях митохондрии практически непроницаемы для ионов Н , К+, Na+, l , S04 - и ряда незаряженных молекул сахарозы и других углеводов. В специальных условиях митохондрии способны накапливать значительные количества ионов, при этом концентра- [c.455]

    В задачу настоящей работы входит изучение аккумуляции ионов Mg2+ митохондриями сердечной мышцы крысы. [c.456]

    Высокая специфичность внутренней мембраны в отношении проницаемости для разных веществ привела к представлению о существовании в ней ферментов-переносчиков. Так как многие субстраты ферментов, локализованных внутри митохондрий, при физиологических значениях pH являются ионами (нуклеотиды, субстраты цикла трикарбоновых кислот, неорганический фосфат, катионы и т. д.), представляет интерес идентификация ионных форм транспортируемых веществ. Такие данные важны для понимания конкретного механизма переноса субстрата через мембрану. [c.458]

    Виноградов А. Д., Лейкин Ю. Н. Идентификация ионной формы фосфата, сопровождающей активное накопление Са +митохондриями печени крысы//Биохимия. [c.459]

    Ионы Са2+ играют важную роль в регуляции многих биохимических реакций, протекающих в клетке. В поддержании низкой по сравнению с внеклеточным пространством концентрации ионизированного Са + в цитоплазме принимают участие митохондрии. Эти внутриклеточные органеллы способны аккумулировать большие количества Са + и вместе с тем им принадлежит решающая роль в обеспечении энергетических потребностей клетки в целом. Накопление Са + в митохондриях существенно влияет на активность многих ферментов, локализованных в матриксе и катализирующих отдельные стадии цикла трикарбоновых кислот, окисления кетокислот с разветвленной цепью, липолиза и др. Ярким примером участия Са + в регуляции собственных метаболических функций митохондрий является торможение окислительного фосфорилирования. [c.476]

    Активный транспорт ионов Са + в митохондриях печени [c.509]

    Вторая транспортная система мембран, участвующая в окислительном фосфорилировании, переносит из цитозоля внутрь митохондрий ион Н2РО4, которому сопутствует ион (рис. 17-25). [c.537]

    Митохондрии печени морских свинок, получавших 2,2 -ДП, окисляют лимонную кислоту менее интенсивно, чем у нормальных животных. При этом также резко понижена их аконитазная активность. Восстановление последней достигается при добавлении к препаратам митохондрий ионов Ре + и аскорбиновой кислоты [594]. [c.66]

    Биолог. Конечно, и достаточно хорошо. Теперь этот вопрос из солидных научных монографий перешел в учебную литературу [Скулачев, 1985, 1989 Кемп, Арме, 1988]. Каждая митохондрия имеет две мембраны одну наружную, а другую - внутренюю. Между ними создается резервуар из полож1ггельио заряженных ионов водорода, которые расходуются при синтезе АТФ из АДФ и запас которых непрерывно возобновляется при окислении глюкозы и. гфугих продуктов... [c.37]

    Биолог. О них мне говорить уже труднее. Я знаю только, что активность митохондрий определяется интенсивностью синтеза ими АТФ, а последняя зависит от электрического потенциала, который создается положительно заряженными ионами водорода. Эти ионы находятся между наружной и внутренней мембранами каждой митохондрии и их 5апас постоянно пополняется за счет окисления глюкозы и других продуктов [Кемп, Арме, 1988], Следовательно, если внешние факторы окружающей среды смогут как-то повлиять на величину этого электрического потенциала митохондрий. [c.99]

    Физик. Конечно, смогут Я бы даже сказал иначе - электромагнитные поля, потоки заряженных частиц, концентрация в воздухе положительных и отрицательных ионов, а также кислотность воды и химические свойства пищи просто не могут не влиять на величину электрического потенциала наших митохондрий, А значит, и на интенсивность синтеза ими АТФ, и на их число, и на интенсивность всех процессов в органюме, т е, в конечном счете и на Параметр Подобия.,  [c.99]

    Читатель. Пожалуйста. Вы хфекрасно знаете, что для улучшения здоровья сейчас рекламируется немало различных препаратов, средств и методов. Например, люстра Чижевского, устраняющая недостаток отрицательных ионов в воздухе городских квартир митомин - таблетки, прием которых должен улучшить условия функционирования митохондрий в организме различные тренажеры, методы лечебного дыхания и др. Почему бы не попьггаться количественно оценить эффект от применения подобных средств Ваш подход тут должен быть единым. Сначала нужно определить, как изменилась Жизненная Теплота у конкретного человека под влиянием такого средства, скажем, за три - четыре месяца. А потом, воспользовавшись итоговой цепочкой подобия, вы сможете сказать ему примерно так  [c.178]


    В 1961 г. английский биохимик П. Митчел выдвинул хемиосмо-тическую (электрохимическую) гипотезу энергетического сопряжения окисления и фосфорилирования, которая в дальнейшем получила подтверждение и развитие во многом благодаря работам советских ученых (В. П. Скулачев, Е. А. Либерман). Принцип хемиосмотического сопряжения иллюстрирует рис. VI. 14. Субстрат АНг —донор водорода — окисляется на активном центре фермента, встроенного на внешней стороне мембраны митохондрии. При этом 2Н+ и А выбрасываются в окружающую среду, а два электрона переносятся на внутреннюю сторону мембраны по так называемой дыхательной цепи, ориентированной поперек мембраны. Локализованный на внутренней стороне переносчик электронов передает электроны акцептору водорода В (например, кислороду), который присоединяет 2Н+ из внутримитохондриального матрикса. Таким образом, окисление одной молекулы АНг приводит к возникновению 2Н+ во внешнем пространстве и исчезновению 2Н+ из внутреннего пространства митохондрии. Возникший градиент ионов водорода генерирует трансмембранный потенциал, который оказывается достаточным по величине для осуществления реакции фосфорилирования. Последняя состоит во взаимодействии АДФ с фосфатом Ф и приводит к образованию АТФ с поглощением 2Н+ из внешнего пространства и выделением 2Н+ в матрикс. Величина трансмембранного потенциала сравнительно 160 [c.160]

    Поглощение катионов двухвалентных металлов сопровождается выделением эквивалентного количества протонов из мембраны, так что фактически мембрана (ее связывающие единицы) обменивают протоны на катионы металлов. Перенос ионов приводит к проникновению воды, и митохондрия набухает набухания не происходит, если ионы связываются неорганическим фосфатом и образуют осадок. Одновалентные ионы калия и натрия способны и пассивна проникать во внутреннее пространство, если имеются анионы и субстрат этот процесс также ведет к набуханию митохондрии. В процессе переноса через мембрану, например, аниона фосфорной кислоты, он прежде чем войти в белково-липидный слой мембраны, превращается в нейтральную частицу (лучшая растворимость в липидной среде). По этой причине протоны вместе с анионами также переносятся из внешней во внутреннюю зону. Работа митохондрий по созданиго макроэргических связей не ограничивается образованием только АТФ первичные продукты деятельности аппарата сопряжения, поставляющие активные богатые энергией вещества и для транслоказы, и для образования НАДФ-Нг, и для синтеза АТФ, мало исследованы, хотя работы по их изучению ведутся интенсивно. [c.390]

    Перенос электронов по дыхательной цепи митохондрий завершает цитохромоксидаза (цитохром сЮг-оксидоредуктаза, комплекс IV), катализирующая реакцию восстановления молекулярного кислорода до воды. Донором электронов для фермента служит ферроцитохром с. Реакция специфически блокируется цианид- и азид-ионами, а также окисью углерода. Цитохромоксидаза прочно связана с внутренней мембраной митохондрий и является интегральным мембранным белком в раствор фермент может быть высвобожден лишь после растворения мембраны высокими концентрациями детергентов. В нативной мембране, а также в растворах неионных детергентов (тритон Х-100, твин-80, Emasol-1130) цитохромоксидаза присутствует в виде высокоактивного димера. Некоторые воздействия (рН>8,5, высокие концентрации солей и неионных детергентов) вызывают появление мономерных форм фермента. Каталитическая активность цитохромоксидазы зависит от степени агрегации молекулы фермента. [c.432]

    Цитохромоксидаза представляет собой сложный белковый комплекс, в состав которого входит по меньшей мере 8 индивидуальных полипептидов. Во внутримолекулярном переносе электронов участвуют простетические группы фермента гемы а и з, а также 2 атома меди ua и ub. Трансмембранный перенос электронов от цитохрома с к молекулярному кислороду сопровождается векторным переносом протона из матрикса митохондрий в межмембранное пространство. Разность электрохимических потенциалов ионов водорода, генерируемая в цитохромоксидазной реакции на мембране митохондрий, может быть использована для синтеза АТФ. [c.432]

    Рассмотрим процессы, происходящие при уравнивании концентрации ионов К+ во вне- и внутримитохондриальном пространстве (рис. 53). Внутренняя мембрана митохондрий плохо проницаема для К" . Поэтому если митохондрии с высоким содержанием калия в матриксе поместить в бескалиевую среду, то калий в окружающей среде практически не появляется. Специфическую проницаемость мембраны для К можно индуцировать антибиотиком валиномицином, представляющим собой циклический депсипептид с выраженными гидрофобными свойствами и способным к комплексообразованию с К+. Добавление к ми- [c.442]

    Энергия, освобождающаяся при окислении субстратов и последующем переносе электронов в дыхательной цепи, используется не только на синтез АТФ, но и для осуществления других функций митохондрий, например для активного транспорта ионов a + через митохондриальную мембрану. Если к суспензии аэробно инкубируемых митохондрий в присутствии субстрата добавить некоторое количество ионов a + (в виде какой-либо его соли), то по истечении небольшого промежутка времени весь добавленный Са + оказывается во внутримитохондриальном пространстве. В процессе активного транспорта создается и поддерживается высокий концентрационный градиент ионов Са + по обе стороны митохондриальной мембраны. Когда функционирование дыхательной цепи полностью блокировано, транспорт может обеспечиваться за счет энергии гидролиза АТФ. [c.449]

    Изучение проницаемости внутренней мембраны митохондрий для ионов Са + привело к представлению о существовании в митохондриях специфической транспортной системы. Ее активность ингибируется низкими концентрациями рутениевого красного, катионов семейства лантапидов и гексаминокобальта. Транспорт Са + специфически ингибируется антителами на митохондриальный гликопротеин, который может быть легко экстрагирован из митохондрий с помощью осмотического щока в присутствии ЭДТА. Иммунологические данные не оставляют сомнений в участии этого гликопротеина (м. м. 33 000 Да) в связывании и (или) переносе Са + через мембрану. Система транспорта Са + в митохондриях катализирует также зависимое от энергии поглощение других двухвалентных катионов, но ее специфичность па- [c.453]

    Выделяют митохондрии из печени крысы. В кювету рН-метра наливают 4,5 мл среды измерения активности (п. 2) и погружают отмытый рН-электрод. Через 2—3 мин в кювету вносят 20—50 мкл суспензии митохондрий (2—4 мг) белка. Убеждаются в том, что нативные митохондрии не катализируют реакцию гидролиза АТФ в отсутствие разобщителя. Через 1 мин после внесения митохондрий в кювету добавляют динитрофенол до конечной концентрации, равной 0,1 мМ. Внесение разобщителя приводит к снятию трансмембранного электрохимического потенциала ионов водорода и активации реакции гидролиза АТФ. Измерение повторяют, в кювету после добавления митохондрий вместо динитрофенола вносят детергент тритон Х-100 до конечной концентрации 0,1%- Наблюдают, как и в случае динитрофенола, стимуляцию реакции. Выбирают концентрацию тритона (в интервале от 0,02 до 2%) дегя проявления максимальной ферментативной активности. [c.460]

    Энергия, освобождающаяся в процессе переноса электронов в митохондриях, трансформируется в электрохимический градиент ионов Н+ протондвижущая сила) и расходуется для протекания раз- [c.469]

    К числу наиболее хорощо охарактеризованных эндергонических реакций митохондрий относятся наряду с окислительным фосфорилированием АДФ восстановление НАД+ сукцинатом, трансгидрогеназная реакция и перенос ионов Са + против концентрационного градиента. Изучение кинетических взаимоотнощений таких реакций при их одновременном протекании важно не только для понимания механизмов регуляции метаболизма митохондрий в целом, но и для выяснения механизмов, лежащих в основе любого из путей трансформации энергии в митохондриях. [c.469]

    При одновременном добавлении АДФ и Са + в аэробную суспензию энергизованных митохондрий окислительное фосфорилирование не происходит до тех пор, пока весь добавленный Са + не поглотится внутрь митохондрий. Это свидетельствует об отсутствии простой конкуренции между процессами и не может быть удовлетворительно объяснено различиями кинетических параметров исследуемых эндергонических реакций. Ясное понимание таких взаимоотнощений может быть получено при анализе энергетического состояния митохондрий (величины трансмембранного потенциала) при их взаимодействии с АДФ и ионами Са +. [c.469]

    В работе предлагается сравнить действие разобщителей на процессы окислительного фосфорилирования и активного транспорта Са + в митохондриях печени крысы. Так как протекание обеих эндергонических реакций сопряжено с поглощением (синтез АТФ) или освобождением (транспорт Са +) стехпометрических количеств ионов Н+, следует воспользоваться установкой для непрерывной регистрации pH стеклянным Н+-чувствительньш электродом (с. 474). Изменения трансмембранного потенциала прослеживают по распределению К+ (в присутствии валиномицина в бескалиевой среде — с. 442) с помощью К+-чувствительного электрода или по абсорбции проникающих синтетических катионов (например, сафранин, оксанол и др.) с помощью двухволновой спектрофотометрии. [c.469]

    Для проведения следующей части работы на полярографе подбирают максимальную концентрацию Са +, добавление которого к митохондриям в среде с сукцинатом вызывает обратимую активацию дыхания. Для прочносопряженных митохондрий печени крысы (4—5 мг белка в пробе) это составляет около 200—400 мкМ Са +. Дальнейшие измерения проводят на регистрирующем рН-метре. В ячейку рН-метра со средой инкубации и погруженными электродами добавляют последовательно митохондрии, сукцинат и выбранную концентрацию Са +. Регистрируют быстрое освобождение ионов Н+ (закисление среды) из матрикса в ответ на добавление Са +. После аккумуляции всего добавленного Са + изменения pH среды прекратятся и на фоне нового стационарного значения pH в суспензии добавляют 1—2 раза одинаковое количество титрованной НС1 или КОН для калибровки шкалы (конечная концентрация НС1 или КОН в используемых условиях должна составлять около IO М). Проводят серию аналогичных проб, содержащих увеличивающиеся концентрации ДНФ, и каждый раз регистрируют скорость закисления среды в процессе активного транспорта Са2+. Для полного торможения транспорта Са + в митохондриях диапазон концентрации ДНФ должен быть значительно (в 2—3 раза) расширен по сравнению с опытами по измерению сукцинатоксидазной активности. Делают 5—6 измерений и строят графическую зависимость скорости транспорта Са + от концентрации разобщителя (5—6 экспериментальных точек). [c.470]

    Цель данной задачи — изучение АТФазной и ИТФазной активности СМЧ, выделенных из митохондрий сердца быка, а также сравнение действия АДФ, ИДФ и сульфит-иона на гидролиз этих НТФ. [c.474]


Библиография для Митохондрия ионами: [c.466]   
Смотреть страницы где упоминается термин Митохондрия ионами: [c.25]    [c.73]    [c.101]    [c.385]    [c.168]    [c.353]    [c.443]    [c.443]    [c.445]    [c.454]    [c.456]    [c.472]   
Биохимия мембран Биоэнергетика Мембранные преобразователи энергии (1989) -- [ c.35 ]




ПОИСК







© 2025 chem21.info Реклама на сайте