Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нервные гигантский аксон кальмара

Рис. 5.1. Регистрация мембранного потенциала нервной клетки, о — путем введения внутриклеточного (микро)электрода б—путем введения электрода внутрь аксона (возможно, только при очень большом диаметре аксона, например в случае гигантского аксона кальмара). Рис. 5.1. Регистрация <a href="/info/4005">мембранного потенциала</a> <a href="/info/103255">нервной клетки</a>, о — <a href="/info/527705">путем введения</a> внутриклеточного (<a href="/info/809428">микро)электрода</a> б—<a href="/info/527705">путем введения</a> электрода внутрь аксона (возможно, только при <a href="/info/1034817">очень большом</a> диаметре аксона, например в случае <a href="/info/1276958">гигантского аксона</a> кальмара).

    Тревога поднялась только в 1939 г. Одновременно две группы исследователей в двух местах — Кол и Кертис, работавшие на морской станции Океанологического института в Вудс-Холе (США), и Ходжкин и Хаксли,, работавшие на морской станции в Плимуте (Англия),— измерили ПД и ПП на самом совершенном уровне тогдашней экспериментальной техники они взяли гигантский аксон кальмара, т. е. одиночное нервное волокно, ввели электрод внутрь волокна и смогли таким образом непосредственно измерить разность потенциалов между внутренней и внешней сторонами мембраны одной клетки, а не на пучке волокон. [c.81]

    Эксперименты по блокированию солями четвертичного аммония позволили получить более точные данные о структуре и свойствах обеих функций калиевого канала. Ионы тетраэтиламмония (ТЭА) блокируют выходящий калиевый ток. В гигантском аксоне кальмара подобный эффект наблюдался только при попадании ТЭА внутрь нервного волокна во время перфузии аксона. Отсюда следует, что канал пронизывает мембрану асимметрично. Еще более интересно то [27], что блокирующая способность ионов четвертичного аммония увеличивается при замене одной из этиловых групп более длинной гидрофобной боковой цепью (рис. 6.8). Эти производные не просто блокируют, они инактивируют уже начавшийся калиевый ток (рис. 6.9), как бы проникая в открытый канал. [c.156]

    Как показали три простых наблюдения, для синаптической передачи необходим приток ионов кальция в окончание аксона. Во-первых, если в момент прибытия нервного импульса во внеклеточной среде вокруг окончания аксона эти ионы отсутствуют, то медиатор не высвобождается и передачи сигнала не происходит. Во-вторых, если через микропипетку искусственно ввести Са в цитоплазму нервного окончания, выход нейромедиатора происходит тотчас даже без электрической стимуляции аксона (это трудно осуществить на нервно-мышечном соединении из-за малых размеров окончания аксона, поэтому такой эксперимент был проведен на синапсе между гигантскими нейронами кальмара) В-третьих, искусственная деполяризация окончания аксона (тоже в синапсе между гигантскими нейронами) без нервного импульса и в условиях блокады натриевых и калиевых каналов специфическими токсинами [c.306]

    Гигантский аксон кальмара занимает особое место в истории наших представлений о мембранном потенциале и потенциале действия. Благодаря его большим размерам (0,2-1,0 мм в диаметре и 5-10 см в длину) в него можно вводить электроды, и в прошлом такие электроды, хотя и очень крупные по сравнению с современными, позволили впервые измерить разность электрических потенциалов между цитоплазмой и внеклеточной жидкостью. При введении электрода в интактный гигантский аксон регистрируется мембранный потенциал, равный —70 мВ. Если аксон, помещенный в сосуд с морской водой, стимулировать, то при проведении нервного импульса мембранный потенциал временно возрастает от -70 мВ до +40 мВ. [c.61]


    Глиальные клетки иногда связаны друг с другом контактными зонами, где может происходить метаболический обмен. Напротив, от нервных клеток они всегда отделяются щелью щириной, по крайней мере, 20 нм. Однако есть основания предполагать, что метаболический обмен происходит также между глией и аксонами, причем роль посредника в этом процессе может играть межклеточная концентрация ионов калпя [10]. Так, было показано, что в гигантских аксонах кальмара — модельной системе многих нейробиологических исследований — 20—40% глиальных белков с М 20 000—200 000 переносятся в аксон по еще неизвестному механизму [10]. [c.31]

    У многих животных обнаружены гигантские нервные волокна, т. е. волокна особенно большого диаметра. Про гигантский аксон кальмара мы уже много говорили. Но гигантские волокна обнаружены и у дождевых червей, и у пиявок, и у речного рака, и у других животных, В чем же роль этих волокон  [c.147]

    Многие беспозвоночные умеют избегать опасности, внезапно совершая быстрое движение. Эта реакция, запускаемая внешним раздражителем, состоит в резком одновременном сокращении особых быстрых мышц, благодаря которому животное удаляется от источника опасности. Такая форма поведения встречается у самых различных беспозвоночных, например у дождевых червей, раков и кальмаров (а также и у некоторых позвоночных см. ниже). Оказалось, что важнейшим звеном нервного пути, обеспечивающего такое отскакивание , служит гигантский аксон. Это вполне естественно, так как скорость проведения нервных импульсов в волокне тем выше, чем оно толще (см. гл. 7). Ясно, что реакция избегания должна быть прежде всего быстрой. (Подробнее свойства гигантского аксона кальмара рассматривались в гл. 7.) [c.54]

    При изучении механизмов возникновения потенциала действия в нейронах (а также в других клетках) мы будем отталкиваться от нескольких общепризнанных фактов. Прежде всего процессы, приводящие к генерации нервного импульса, разыгрываются на мембране и заключаются в кратковременных изменениях мембранного потенциала. Идеи о том, что потенциал действия возникает именно на мембране, высказывались уже в XIX веке. Они были подтверждены в изящных опытах на гигантских аксонах кальмара проведение импульсов в этих аксонах сохранялось даже после выдавливания из них аксо-плазмы. [c.152]

    Микроэлектродный метод дал возможность измерить биопотенциалы не только на гигантском аксоне кальмара, но и на клетках нормальных размеров нервных волокнах других животных, клетках скелетных мышц, клетках миокарда и других. [c.69]

    В заключение рассмотрим необычный пример — головоногого моллюска. Характерные приспособительные признаки осьминога < рис. 2.11)—потеря раковины, появление длинных щупалец е области головы, а также развитие мантийного мышечного сифона для накачивания воды. Как и у других моллюсков, центральная нервная система расположена вокруг пищевода. Ганглии сильно увеличены и, слившись, образуют настоящий мозг (рис. 2.12). Из органов чувств самого высокого уровня развития достигают глаза, и соответственно зрительные ганглии превращаются в сложные.зрительные доли мозга, которые становятся -самыми крупными его отделами. Нейроны зрительной доли дифференцируются на ряд форм, сильно отличающихся от обычных униполярных нейронов, характерных для беспозвоночных (см. гл. 17). В отличие от брюхоногих моллюсков головоногие — это активные, стремительные животные. Механизм движения их заключается в выбрасывании воды через сифон по принципу ре-.активного движения, что ставит моллюсков в ряд самых быстрых морских животных как при нападении, так и при избегании опасности. Бегству способствует система гигантских волокон, особенно хорошо развитая у кальмара. Кальмар дал нейрофизиологам возможность экспериментировать на гигантском аксоне, что очень важно для изучения нервного импульса. [c.53]

    В основе представлений о процессе генерации нервного импульса лежат исследования, выполненные на гигантских нервных волокнах кальмара А. Ходжкиным, А. Хаксли и Б. Катцем. Для измерения потенциала действия внутри аксона вводят тонкий стеклянный капилляр с диаметром кончика менее 0,5 мкм, заполненный концентрированным раствором КС1, что не оказывает заметного влияния на активность аксона. [c.166]

    У кальмара гигантские нервные волокна управляют сокращением мантии. К заднему концу мантии идут более толстые аксоны, а к переднему — несколько более тонкие. В результате такого устройства сигналы, выходящие из ганглия кальмара, управляющего его плаванием, приходят к разным участкам мантии практически одновременно, обеспечивая мощный выброс воды из мантийной полости через воронку и быстрое движение кальмара в воде. [c.147]

    Без использования гигантского аксона кальмара наше понимание генерации потенциала действия не продвинулось бы так вперед (рис. 12.1) [1, 2]. Аналогично, нейромышечное соединение (рис. 12.2)—это классическая экспериментальная модель синаптической передачи [1, 2]. Простые нервные системы пиявки (Hirudo) и морского моллюска (Aplysia) (рис. 12.3)—ценные модели изучения физиологии поведения 3] (гл. 11). При изучении поведения этих животных, например способности плавать у пиявки и рефлекса втягивания жабры у Aplysia, удалось идентифицировать нейроны, обусловливающие [c.352]


    Электровозбудимые мембраны играют первостепенную роль в изучении сложных неравновесных явлений, протекающих в биологических системах. Именно их сложность делала до последнего времени невозможным количественное описание большинства биологических систем. Нервные мембраны — одно из немногих исключений в биологии они были изучены количественно весьма подробно как в экспериментальном, так и в теоретическом плане. Одной из наиболее изученных систем является гигантский аксон кальмара. Диаметр его составляет приблизительно 500 мкм, что дает экспериментальные преимущества по сравнению с другими системами, поскольку в этот аксон гораздо легче вставить микроэлектроды, чтобы стимулировать или регистрировать его электроактивность. В понимании механизма действия электровозбудимых мембран большую роль сыграла работа Ходжкина и Хаксли [9.4] на гигантском аксоне кальмара, использовавшая метод фиксации напряжения (рис. 9.7 и 9.8). Они развили также успешное феноменологическое описание динамических свойств нервной мембраны, которое до сих пор занимает центральное место в электрофизиологии. [c.350]

    Основные эксперименты по электростимуляции нервных клеток были проведены Колом, Ходжкином и Хаксли на гигантском аксоне кальмара. На рис. 101 приведена схема экспериментальной установки. Мембранный потенциал измеряли с помощью двух хлорсеребряных электродов сравнения, соединенных с исследуемыми жидкостями микропипетками,заполненными физиологическим раствором (0,9%-ный раствор Na l), желатини- [c.235]

    Вернемся теперь к нервам. Электрическую структуру нервного волокона в принципе угадал еще Гальвани. (Правда, он рассуждал о целом нерве, а не о составляющих его отдельных нервных волокнах.) Он писал, что внутри нерва имеется проводящая среда, окруженная изолирующей оболочкой, подобно проводу от электрической машины, заизолированному воском. С помощью специальных химических экспериментов Гальвани пришел к правильному выводу, что изоляция нерва образована жироподобными веществами. Дальнейшее изучение строения уже отдельных нервных волокон подтвердило догадку Гальвани. А в 1946 г. Ходжкин и Раштон экспериментально показали, что такие одиночные волокна, как гигантский аксон кальмара, ведут себя подобно бесконечному кг-белю, т. е. к ним полностью применима теория Томсона. Они вводили в аксон микроэлектрод и пропускали черс з него ток, создавая в этой точке изменение мембранно о потенциала. С помощью второго микроэлектрода мною-кратно измеряли разность потенциалов на мембране па разных расстояниях от первого электрода (рис. 33, а). Потенциал действительно спадал по экспоненте. Константу затухания можно найти непосредственно по графику спада потенциала (рис. 33, б). Оказалось, что длина аксона кальмара во много раз больше его константы затухания. После этого Ходжкин и Раштон провели расчеты, которые были, так сказать, обратной задачей по сравнению с первым приложением теории Томсона. При расчете трансатлантического кабеля нужно было, зная удельные сопротивления материалов жилы и изоляции кабеля, рассчитать его параметры (диаметр жилы, толщину изоляции). Здесь же был готовый кабель — аксон, но удельные сопротивления его оболочки — мембраны и жилы — аксоплазмы былинеиз- [c.130]

    Подобно тому как гигантский аксон кальмара является образцом] нервлого волокна, образцом нервной клетки является мотонейрон кошки (рис. 51). Эта клетка имеет относительно большие размеры (около 30 мкм) и позтому наиболее детально изучена. Мотонейрон (МН) имеет тело и дендриты, на которых расположены около 10 ООО синапсов, образованных окончаниями других нервных клеток. От тела МН отходит выходной отросток — ак-сон представляющий собой миелинизированное волокно, У его основания имеется особая структура — аксонный холмик это часть МН, имеющая мембрану с наиболее низким порогом. Аксоны МН могут быть очень длинными, например, у кошки — сантиметров 25, а у слона или жирафа — и несколько метров. В конце аксон МН разделяется на веточки — терминали, которые оканчиваются на мышечных волокнах. Кроме того, еще внутри спинного мозга, где лежат МН, аксон отдает боковые веточки (кол-латерали) которые идут к другим нервным клеткам. [c.206]

    Цитоплазма, окружающая органеллы нервных клеток, состоит главным образом из воды, белков и неорганических солей (рис. 6.1). К белкам относятся как структурные макромолекулы и высокомолекулярные ферменты, так и более низкомолекулярные вещества типа полипептидов, пептидов и различных аминокислот. Концевые группы многих подобных молекул диссоциируют в водной среде цитоплазмы, и благодаря этому молекулы приобретают электрический заряд, т. е. превращаются в ионы. Содержание этих органических ионов в гигантском аксоне кальмара можно определить путем простого выдавливания цитоплазмы с ее последующим анализом. Подобный анализ показал, что главным органическим ионом нервных клеток является изетионат. Поскольку суммарный заряд этого иона отрицателен, он представляет собой органический анион (А ). Полагают, что в других типах нервных клеток содержатся глутамат, аспартат и органические фосфаты. Все подобные молекулы несут отрицательный суммарный заряд, т. е. являются анионами. [c.129]

    Все эти методы вместе с традиционными биохимическими методами измерения потоков радиоактивного Са + в согласии друг с другом показывают, что концентрации свободного ионизированного Са в нервных клетках чрезвычайно низки. Они находятся в интервале от 10 до 10 М. Сопоставьте это Ю " М для суммарного содержания Са + в аксоплазме гигантского аксона кальмара (и около 10 М для морской воды). Таким образом, большая часть Са в нейроне (равно как и в любой другой клетке тела) находится в связанной форме, и только очень малая часть — в свободном ионизированном состоянии в цитозоле. Это один из ключей к пониманию функций Са, поскольку это означает, что клетка может использовать малые изменения локальной концентрации Са +, чтобы вызвать значительные эффекты. Зто основа той критической роли, которую Са + играет в таких разных функциях, как секреция, течение аксоплазмы, подвижность, сокращение, ферментативные реакции и проницаемость мембраны. Указанные функции и ряд других представлены на рис. 9.5. [c.212]

    Я уже отмечал, что еще очень недавно исследователи были разделены на два непримиримых лагеря — сторонников сорбционной теории, возглавляемых Д. Н. Насоновым, и сторонников мембранной теории во главе с Д. Л. Рубинштейном. Темпераментные, не всегда академические споры завершились во втором поколении противников победой мембранной теории. Она восторжествовала благодаря замечательным достижениям в изучении биоэлектрических явлений на гигантских аксонах кальмаров и других удобных объектах. В самом деле, можно перфу-зировать, промыть гигантский аксон, удалить из него всю протоплазму— а способность к раздражению, к генерации нервного импульса останется. Более того, можно получить искусственную-возбудимую мембрану, обладающую всеми основными свойствами естественной [434, 435]. Следовательно, функция аксона и. в самом деле обусловлена лишь его мембраной. Следовательно, ионная асимметрия и в самом деле создается без участия избирательной сорбции ионов в толще внутриклеточной протоплазмы. [c.100]

    Большую скорость распространения нервного импульса по аксону кальмара обеспечивает их гигантский по сравнению с аксонами позвоночных диаметр. У позвоночных большая скорость передачи возбуждения в нервных волокнах достигает другими способами. Аксоны позвоночных снабжены миелиновой оболочкой, которая увеличивает сопротивление мембраны и ее толш,ину. [c.89]

    Биологические модели представляют собой биологические объекты, удобные для экспериментальных исследований, на которых изучаются свойства, закономерности биофизических процессов в реальных сложных объектах. Например, закономерности возникновения и распространения потенциала действия в нервных волокнах были изучены только после нахождения такой удачной биологической модели, как гигантский аксон кальмара. Опыт Уссинга, доказывающий существование активного транспорта, был проведен на биологической модели - коже лягушки, которая моделировала свойство биологической мембраны осуществлять активный транспорт. Закономерности сократимости миокарда устанавливают на основе модельных экспериментов на папиллярной мышце. [c.165]

    Многочисленными опытами доказана исключительная зависимость экзоцитоза от ионов Са во внешней среде. Удаление Са + из среды или добавление в среду Са-комплексона — ЭГТА или ингибиторов Са-каналов (см. табл. 7) приводит к резкому торможению или практически полному прекращению Са-зависимой секреции медиаторов нервными окончаниями и гормонов железистыми клетками. Ионофоретическое введение Са + в гигантский аксон кальмара в концентрации 1—10 мкМ при отсутствии деполяризующих воздействий индуцирует процесс секреции ацетилхолина путем экзоцитоза. Электрофизиологиче-ский анализ секреции ацетилхолина в нервно-мышечных синапсах показал, что в состоянии покоя (без деполяризации мембран) также происходит Са-зависимая секреция медиатора путем экзоцитоза, а секретируемый ацетилхолин генерирует в постсинаптической мембране мышц так называемый миниатюрный потенциал. В этом случае экзоцитоз индуцируется случайным (по типу броуновского столкновения частиц) контактом синаптических пузырьков с пресинаптической мембраной, а кроме того, и достаточно закономерным контактом, индуцируемым локальным накоплением Са + в примембранной области за счет постоянного, хотя и небольшого входа Са + в клетку из внешней среды, и локального высвобождения Са + из внутриклеточных депо хранения. [c.75]

    В экспериментальных условиях возникновение и проведение нервного импульса можно наблюдать в аксоне, лишенном тела нейрона. Например, нерв лягушки проводит импульсы более недели после отделения от клеток. Даже если из аксона удалить аксоплазму и заменить ее солевым раствором, то оставшаяся мембранная трубочка сохраняет способность к возбуждению и проведению импульса. Именно с применением таких трубочек, изготовленных из гигантского аксона кальмара, впервые были изучены электрические характеристики и механизм нервного импульса. [c.533]

    К )-насосом (разд. 36.2). В состоянии покоя проницаемость мембраны нервной клетки для К гораздо выше, чем проницаемость для Na, и поэтому мембранный потенциал определяется главным образом отношением внутриклеточной концентрации К к внеклеточной (рис. 37.2, А). В нестиму-лированных аксонах мембранный потенциал составляет-60 мВ это близко к величине-75 мВ (равновесный К -потен-циал), которая соответствует проницаемости мембраны для одних только ионов К"". Нервный импульс, или потенциал действия, возникает при деполяризации мембраны, выходяшей за пределы выше порогового уровня (а именно с —60 до —40 мВ). За несколько миллисекунд мембранный потенциал становится положительным и достигает примерно +30 мВ, после чего вновь делается отрицательным. Эта усиленная в несколько раз деполяризация распространяется по нерву, достигая нервного окончания. В раскрытии природы потенциала действия важную роль сыграло изучение гигантского аксона кальмара. Поскольку в этот необычайно крупный аксон (диаметром около миллиметра) нетрудно ввести электроды, он стал излюбленным объектом исследователей. [c.327]

    Среди моллюсков (тип Mollus a) наибольший интерес для биохимиков представляют головоногие — кальмары и осьминоги. У кальмара имеются нервные клетки (нейроны) с гигантским аксоном, изучение которого внесло большой вклад в развитие наших представлений о механизме проведения нервных импульсов. У осьминогов есть зачатки разумного -поведения, не свойственные другим беспозвоночным, нервные реакции которых полностью запрограммированы . Мозг некоторых брюхоногих моллюсков состоит всего из 10 нейронов отдельные из них необычайно велики. Мозг моллюсков является объектом интенсивного исследования, направленного на изучение его организации и механизма функционирования. [c.53]

    Все, что способствует быстроте и эффективности пассивного распространения деполяризации, будет повышать скорость и эффективность распространения потенциалов дейстиия. Одним из таких факторов может быть большой диаметр аксона. У некоторых беспозвоночных, например у кальмара, для быстрой передачи сигналов в ходе эволюции выработались гигантские аксоны толщиной до 1 мм. Однако позвоночные обладают еще лучшим приспособлением столь же высокая скорость проведения сигналов достигается у них гораздо более экономным способом-путем изоляции большей части поверхности аксона миелиновой оболочкой. Эту оболочку образуют специализированные глиальные клетки-шванновские клетки в периферической н олигодендроциты в центральной нервной системе. Плазматическая мембрана этих клеток слон за слоем плотно наматывается на аксон (рис. 18-22). Каждая шваниовская клетка миелинизирует одни аксон, образуя сегмент оболочки длиной около миллиметра, а олигодендроциты формируют подобные сегменты оболочки одновременно у нескольких аксонов. [c.91]

    Два простых наблюдения показывают, что для синаптической передачи необходим приток нонов Са в окончание аксона. Во-первых, если во внеклеточной среде Са отсутствует, медиатор не высвобождается и передачи сигнала не происходит. Во-вторлх, если искусственно ввести Са в цитоплазму нервного окончания при помощи микропипетки, выход нейромедиатора происходит даже без электрической стимуляции аксона, рто трудно осуществить на нервно-мышечном соединении из-за малых размеров окончани аксона поэтому такой эксперимент был проведен на синапсе между гигантскими нейронами кальмара.) Эти наблюдения позволили воссоздать последо вательность событий, происходящих в окончании аксона, которая описана ниже. [c.96]

    Например, у дождевых червей вдоль всего тела проходят гигантские аксоны (их диаметр достигает 60 мкм, что очень много для дождевого червя). Как видите, они не такие гигантские, как у кальмара, да и устроены они иначе. На самом деле это не аксон, т. е. не отросток одной клетки. Этот аксон состоит из множества цилиндрических кусочков. В каждом сегменте тела есть нервная клетка, которая отращивает такой кусочек затем торцевые мембраны этих цилиндров соединяются коннексона-ми, так что получается кабель с перегородками, пронизанными каналами коннексонов (рис. 41,е). В результате импульс бежит по этому составному аксону как по обычному толстому нервному волокну. Эти волокна вызывают быстрое сокращение тела червя, обеспечивая реакции отдергивания от раздражителя или быстрого втягивания в норку. При химических синапсах эта реакция занимала бы несколько десятых долей секунды ведь задержка между сегментами в ХС холоднокровного составляет несколько миллисекунд, а сегментов может быть несколько десятков и даже сотня задержка на ЭО составляет всего 0,01 мс ясно, что тут за счет ЭС обеспечивается жизненно важная экономия времени. Такие же аксоны есть и у речного рака когда опасность грозит спереди, они обеспечивают быстрое подгибание брюшка (эта реакция называ- [c.169]

    Как отмечалось, в механизме проведения сигналов по нерву посредством волны деполяризации источником необходимой энергии служит неравновесное состояние градиентов концентрации катионов — калия, натрия, кальция. Скорость проведения нервного импульса зависит от скорости изменения этих градиентов, т. е. от быстроты конформационной перестройки мембранных компонентов. По мнению Катца [130], скорость распространения волны деполяризации зависит от продольной электропроводности внутренней области аксона и поэтому она тесно коррелирует с толщиной волокна. Как известно, один из способов увеличения скорости передачи сигналов состоит в уменьщении осевого сопротивления кабеля путем увеличения диаметра волокна. Именно это ре-щенпе избрала природа для удовлетворения потребности в высокоскоростной передаче импульсов у некоторых беспозвоночных. Например, быстрое движение кальмара при бегстве от опасности контролируется небольшим числом гигантских аксонов, иннервирующих обширную мускулатуру его мантии, которая действует как реактивный двигатель. Однако для животного, которому по-М1ИМ0 быстроты реакции необходимо и наличие огромного числа каналов для передачи множества сенсорных сообщений и обеспечения двигательных реакций, гигантские аксоны оказались бы непригодными. Ясно, например, что в з,рительном нерве, где должно находиться больше миллиона параллельных аксонов для передачи зрительной информации просто не хватило бы места для большого числа гигантских волокон. Решением, найденным нервной системой позвоночных, явилось образование миелинизиро-ванного аксона, в котором кабельные потери сильно снижены благодаря миелиновой оболочке (130, с. 114). [c.207]


Смотреть страницы где упоминается термин Нервные гигантский аксон кальмара: [c.24]    [c.122]    [c.136]    [c.144]    [c.142]    [c.171]    [c.68]    [c.36]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.61 , c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Аксон кальмара



© 2025 chem21.info Реклама на сайте