Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефть мол. веса нефтяных фракций

    Молекулярные веса нефтяных фракций тем больше, чем выше их температура кипения. Наряду с этим выделенные из различных нефтей фракции, выкипающие в одном и том же интервале температур, имеют разные молекулярные веса, так как углеводородный состав этих фракций различен. [c.38]

    Азотистые основания используются как дезинфицирующие средства, антисептики, ингибиторы коррозии, как добавки к смазочным маслам и битумам, антиокислители и т. д. Однако наряду с положительным влиянием азотистых соединений они обладают и нежелательными свойствами — снижают активность катализаторов в процессах деструктивной переработки нефти, вызывают осмоление и потемнение нефтепродуктов. Высокая концентрация азотистых соединений в бензинах (1- Ю вес. %) приводит к усиленному коксо-и газообразованию при их каталитическом риформинге. Даже небольшое количество азотистых соединений в бензине способствует усилению лакообразования в поршневой группе двигателя и отложению смол в карбюраторе. Наиболее полно удаляются азотистые соединения из нефтяных фракций 25%-ным раствором серной кислоты. [c.30]


    Смолистые вещества, согласно этому взгляду, есть, так сказать, еще недоработанная нефть, или растворимые остатки нефтематеринского вещества. Многие неясные вопросы решаются в общем плане с принятием этой точки зрения достаточно просто. Присутствующие в нефти гетерогенные соединения, кислородсодержащие ароматические углеводороды, гибридные формы углеводородов являются продуктами ранних стадий превращения органического вещества, а высокие удельные веса нефтяных фракций, рапным образом и оптическая деятельность, свидетельствуют о неполной завершенности процессов превращения органического вещества. Высокомолекулярные соединения смолистых веществ в ходе процессов разукрупнения молекул образуют углеводородные вещества циклической структуры, переходящие из высших фракций в средние и низшие, вследствие чего бензиновые и керосиновые фракции тяжелых нефтей имеют высокие удельные веса. Таким образом, эта характеристика фракций непосредственно связана с природой смолистых веществ. Принцип наименьшего изменения молекул не позволяет думать, что разукрупнение молекул смолистых веществ сразу дает только удельно легкие осколки, которые могли бы образовать фракции с теми низкими удельными весами, которые характерны для нефтей значительного нревращения. [c.158]

    Молекулярный вес нефти и нефтяных фракций зависит от молекулярного веса и соотношения компонентов, входящих в нее. [c.20]

    На основании полученной эмпирической зависимости между средними молекулярными весами нефтяных фракций и их средними температурами кипения Воинов и Хмельников [34] дали кривую зависимости скрытой теплоты испарения от температур кипения. С. Н. Обрядчиков [35] составил другую зависимость на основании обширных работ Саханова и Васильева [36] по определению средних молекулярных весов нефтяных фракций и их температур кипения. Эту зависимость он считает для нефтей СССР наиболее точной. [c.132]

    Сырье крекинга — нефтяная фракция — представляет собой смесь углеводородов приблизительно одинакового молекулярного веса. Эти углеводороды относятся к различным гомологическим рядам в небольшом количестве содержатся парафины, конденсированные, многоядерные нафтеновые или ароматические углеводороды основную массу составляют алкилированные одно- и многоядерные нафтеновые и ароматические углеводороды, а также алкилированные нафтено-ароматические углеводороды. Длинные парафиновые цепи расщепляются сравнительно легко, значительно труднее идет разрыв олефиновых цепей по месту двойной связи. Описать точно расщепление сложных молекул весьма трудно, но представляется целесообразным для пополнения наших представлений сравнить реакции основных классов соединений, имеющихся в нефти. [c.299]


    На ассоциацию сульфидов средних и высших фракций нефти с конденсированными ароматическими углеводородами недавно было обращено внимание в работе Крейна и Рубинштейна и сотр. [15]. Гетероциклические азотистые основания нефти полностью представлены ароматическими системами. По-видимому, их донорно-акцепторное взаимодействие с сульфидами нефти, представленными преимущественно тиацикланами, осуществляется легче, чем взаимодействие сульфидов с ароматическими углеводородами. Существованием ассоциатов, вероятно, объясняется приуроченность гетероатомных соединений к смолистым компонентам нефти. С увеличением молекулярного веса нефтяных фракций и усложнением структур входящих в них соединений вероятность образования таких ассоциатов увеличивается. Можно предположить, что в широкой фракции не менее 40% азотистых оснований находится в виде подобных комплексов. В сырых нефтях в виде крупных ассоциатов, по-видимому, находится не менее 50% азотистых оснований. Размеры ассоциированных частиц настолько велики, что они не сорбируются катионитами. Неполная сорбция оснований из газойля и легкого масла, отмеченная в работах [6, 7], вероятно, также связана с существованием ассоциатов. В присутствии уксусного ангидрида— полярного растворителя с кислыми свойствами — происходит разрушение ассоциатов (вероятно частичное), азотистые основания оказываются свободными, либо связанными в частицы меньшего размера, которые могут сорбироваться на катионите. [c.128]

    Минеральное масло. Это вещество, растворимое в стандартном лигроине (бензине-растворителе, к-пентане или изопентане) [12—13] и не удаляемое из раствора такими адсорбентами, как фуллерова земля, активированный уголь или силикагель. Как указано выше, эта нефть, но-видимому, не очень отличается от любой другой циклической нефтяной фракции того же молекулярного веса, содержащей обычные компоненты, включая даже парафины [14—15]. [c.536]

    Судя по высокому удельному весу нефтяных фракций от 72° (табл. 40), надо думать, что количество парафинов в бакинской нефти, начиная с гептанов, не мон ет быть велико. Естественно также, что открытие их вследствие усложнения состава фракций становится все труднее ж труднее. [c.137]

    Объем нефти или нефтяных фракций с повышением температуры увеличивается. Благодаря изменению объема происходит понижение удельного веса по сравнению с удельным весом при нормальной температуре (15° С). Изменение удельного веса или плотности при повышении температуры выражается формулой Менделеева  [c.585]

    Молекулярный вес нефтей является очень важным свойством при изучении химического состава, например, при характеристике нефтяных фракций, как будет сказано ниже в разделе указателей и корреляций. Некоторые приблизительные молекулярные веса нефтепродуктов  [c.206]

    Молекулярный вес нефтей и получаемых из них продуктов — един из важнейших показателей, широко используемый при подсчете теплоты парообразования, объема паров, парциального давления, а также при определении химического состава узких нефтяных фракций и т. д. Нефть и нефтепродукты представляют собой смеси индивидуальных углеводородов и некоторых других соединений, поэтому они характеризуются средним молекулярным весом, но слово средний обычно опускают. [c.38]

    В масляных фракциях нефти слабо растворяются твердые углеводороды. Они способны выделяться при охлаждении этих фракций в виде кристаллов. Растворимость уменьшается с увеличением молекулярного веса твердых углеводородов, повышением их концентрации и температуры кипения масляных фракций. С повышением температуры растворимость парафинов и церезинов увеличивается и при температуре плавления они смешиваются со всеми нефтяными фракциями во всех соотношениях. [c.90]

    Фенолы впервые были обнаружены в бориславской нефти. -Незначительное количество их найдено и в бакинских нефтях. Больше фенолов содержится в нефтях восточных районов страны пермских — 0,013 вес. %. В нефтях обнаружены все три изомера крезола, ксиленолы и р-нафтол. Процессы выделения фенолов из нефтяных фракций пока не получили промышленного применения. [c.31]

    Процессы гидроочистки углеводородного сырья, нефтяных фракций и нефти являются в настоящее время, как показано в гл. 1, самыми распространенными гидрогенизационными процессами. Их быстрое развитие было предопределено в основном двумя факторами 1) вредным действием сернистых соединений, содержащихся в моторных топливах, в ходе эксплуатации двигателей и загрязнением атмосферы сернистым газом после сгорания этих соединений и 2) значительным удельным весом сернистых нефтей в общем балансе нефтедобычи. Вследствие этого в разработке и освоении процессов гидроочистки уже достигнуты существенные успехи и еще более благоприятные перспективы их развития можно ожидать в будущем (см. стр. 10, 12 сл.). Поскольку гидроочистке подвергаются разные виды сырья с различным не только количественным, но й качественным содержанием сернистых соединений, процессы гидроочистки многообразны (см. гл. 1-) и столь же многообразны чисто химические вопросы, которые нужно решить для понимания механизма известных и создания новых процессов гидроочистки. Основными из этих вопросов являются природа и реакционная способность сернистых соединений нефтей, а также особенности механизма и энергетики гидрогенолиза С—S-связей, поскольку необходима селективность их разрыва без затрагивания в одних случаях ординарных связе , в других случаях — ароматических или олефиновых связей и т. д. Очевидно, что вопросы химии превращений сернистых соединений было бы полезно связать со свойствами и составом применяемых катализаторов. Эти вопросы и будут рассмотрены ниже. Что касается технологии процессов гидроочистки, они весьма полно рассмотрены в обзорных работах, например [c.278]


    К этой группе составляющих нефти должны быть отнесены все органические соединения, в состав которых, кроме углерода и водорода, входят в больших или меньших количествах и другие элементы прежде всего сера, кислород, азот, металлы (Ге, N1, Со, V, Сг, Мд и др.). Наиболее легкие (бензиновые) части нефти практически полностью состоят из углеводородов. Из гетероорганических соединений в бензинах иногда содержатся лишь сернистые соединения и то в виде следов. Количество и разнообразие гетероорганических соединений в нефтяных фракциях неуклонно возрастают с увеличением их молекулярного веса. Основная часть этих соединений сосредоточена в наиболее тяжелой, т. е. в наиболее высокомолекулярной части нефти, называемой обычно тяжелыми нефтяными остатками. Содержание гетероорганических компонентов в различных фракциях нефти колеблется в весьма широких пределах — от долей процента в легких и средних фракциях до 40—50% и выше в тяжелых нефтяных остатках. [c.302]

    Молекулярные веса нефтей и нефтяных фракций определялись неоднократно. Наиболее надежны данные Оаханова и Васильева (469), приводимые в извлечении в табл. 3. [c.28]

    Интересные данные о характере сернистых соединений в разных фракциях ромашкинской и туймазинской нефтей удалось получить, в результате применения метода потенциометрического титрования для определения содержания сульфидной серы [44]. Из приведенных в табл. f)6 данных видно, что в низкомолекулярной части ромашкинской и туймазинской нефтей содержатся только сульфиды. По мере увеличения молекулярных весов нефтяных фракций и закономерного возрастания в них общего содержания серы доля сульфидной серы (включая и тиофановую) снижается. Лишь в самой высокомолекулярной части нефти доля сульфидной серы снова несколько возрастает. [c.345]

    При крекинге нефтепродуктов процесс коксообразования вызывается в первую очередь ароматическими углеводородами (алкилиро-ваннымп). Чем выше молекулярный вес ароматического углеводорода (алкилированного), тем скорее идут процессы коксообразования. Этот вывод, основанный на изучении кинетики крекинга индивидуальных углеводородов, подтверждается также изучением кинетики коксообразования нефтяных продуктов, где увеличение молекулярного веса нефтяной фракции вызывает увеличение скорости образования карбоидов. В качестве примера приводим данные Саханова и Тп,иичеева по кинетике коксообразования (126в) при крекинге веретенного и машинного дестиллатов грозненской беспарафиновой нефти (табл. 176). [c.212]

    Наряду с этим исследования ГрозНИИ показали, что в отличие от асфальтенов нейтральные смолы молекулярно диспергируются в нефтях и нефтяных фракциях. Нарастание молекулярного веса смол с увеличением концентрации их в бензольном растворе явно указывает на образование ими ассоциированных комплексов молекул, однако, очевидно, такая ассоциация не приводит к мйцеллярной структуре. Получающиеся растворы не показывают никаких признаков коллоидной структуры. Это резко отличает нейтральные смолы от асфальтенов. [c.88]

    Растворимость газообразных парафиновых углеводородов в нефтях и нефтяных фракциях при одних и тех же температурах повьшается с увеличением молекулярного веса этих углеводородов и понижается с увеличением молекулярного веса нефтяных фракций. [c.79]

    В технологических расчетах допускают, что независимо от природы нефтей их узкие фракции при одинаковой средней температуре кипения обладают одинаковыми молекулярными весами. На этом основании весьма часто пользуются эксперимеитальпой кривой молекулярных весов ГрозНИИ (фиг. 9, кривая 6), связывающей молекулярный вес нефтяных фракций с их средней температурой кипения. На том же графике приведены кривые молепу- [c.50]

    Тесная связь строения углеводородной и кислотной частей нефти с близким числом атомов углерода в молекуле проявлялась также и в том, что содержание нафтеновых кислот повышается при переходе от нефтей менее цикличных, т. е. парафинистых, к нефтям нафтенового основания. Появилось значительное число экспериментальных данных, свидетельствующих о том, что среди кислот, выделенных из бензино-керосиновых фракций, присутствуют наряду с нафтеновыми кислотами низшие гомологи (С —С7) жирных кислот. Содержание этих кислот в нефтях значительно меньше, чем нафтеновых кислот, причем с увеличением молекулярных весов нефтяных фракций оно снижается точно так же, как снижается и доля парафиновых углеводородов в этих фракциях. Жирные кислоты никак нельзя было подвести под определение нафтеновые кислоты, поэтому еще Аскан предложил в качестве общего понятия, охватывающего все выделяемые из нефти карбоновые кислоты, ввести понятие более широкое, а именно нефтяные кислоты. Это предложение Аскана позже было поддержано Гурвичем. Что касается часто употребляемого названия нефтяные кислоты ( Ре1го1заиге ), — пишет Гурвич, то, по предложению Аскана, его следует оставить для обозначения вообще всех кислот, встречающихся в нефти, а в ней, кроме нафтеновых, попадаются, хотя и в небольших количествах, и некоторые кислоты жирного ряда муравьиная, уксусная и т. д. под нафтеновыми же следует подразумевать исключительно карбоновые кислоты, производящиеся от нафтеновых углеводородов [14]. Наметкин нефтяными кислотами называет кислоты, выделяемые из нефти щелочной обработкой, хотя он тут же подчеркивает И по составу и по свойствам нефтяные кислоты вполне соответствуют нафтеновым кислотам, т. е. синтетическим кислотам, являющимся производными нафтенов [15]. [c.310]

    Униворсальпость процесса относится не только к сырью, но даже в большей степени к условиям реакции. Например, можно вести крекинг-процесс таким образом, чтобы получить максимальный выход жидких нефтяных фракций последнее достигается ведением реакции при соотвотствующс й температуре. ЬСсли сырьем являются остатки от вакуумной перегонки нефти, ю можно получить 60—65% вес. нефтяных фракций, служащих сырьем для дальнейшего крекинг-процесса. [c.429]

    По различным нефтяным фракциям смолы распределены неравномерно в бензиновых фракщшх (т.кип. до 200°) практически нет С. н. в керосиновых фракциях (т. кип. 200—300°) — сотые или десятые доли процента основная масса (до 85% С. п.) содержится в нефтяном остатке после перегонки в масляных дистиллятных фракциях в зависимости от характера нефти содержится от 3—4% до 10—15% и более С. н. Средний мол. вес С. н., выделенных из различных нефтей, колеблется в пределах 550—850 мол. вес смол, выделенных из дистиллятов, различен, однако средний мол. вес всегда выше среднего мол. веса нефтяной фракции, из к-рой эти смолы выделены. Элементарный состав С. н. различных погонов нефти приведен в таблице. [c.468]

    Аналогично увеличивается в молекуле число нафтеновых колец однако в этом случае не отмечается изменений для нефти Р (Бивер Лодж). Оба последних явления (пункты 4 и 5) указывают на увеличение циклических соединений с увеличением температуры кипения или молекулярного веса нефтяных фракций. [c.83]

    По молекулярному весу смолы различных дистиллятов значительно отличаются друг от друга. С повышением температуры кипения нефтяной фракции молекулярный вес содержащихся в ней смол растет. Средний молекулярный вес смол всегда выше среднего молекулярного веса нефтяной фракции, из которой эти смолы выделяются. По элементарному составу смолистые продукты различных фракций нефти также отличаются друг от друга с повыщени-ем температуры кипения дистиллятов в смолах увеличивается содержание углерода и снижается количество кислорода и серы. [c.26]

    Растворимость" газообразных парафиновых углеводородов в нефтях и нефтяных фракциях при одних и тех же температурах повышается с увеличением молекулярного веса этих углеводородов и понижается с увеличением молекулярного веса нефтяных фракций. Исследование растворимости метана в различных углеводородах по данным Пилята и Годлевича показывает, ЧТО  [c.140]

    Дисульфиды содержатся в реактивных топливах в количествах, не превышающих 10—14% от общего содержания серы. Г, повышением молекулярного веса и температуры кипения нефтяных фракций содержание дисульфидов, очевидно, возрастает, но до определенного предела, так как дисульфиды являются термически неустойчивыми веществами. В настоящее время имеется очень мало исследований, посвященных изучению распределения дисульфидной серы по фракциям нефтей. Строение и свойства дисульфидов изучены еще недостаточно. [c.33]

    НИЯ, весьма сложен. В связи с этим существует разрьш между нашими представлениями о свойствах тяжелых углеводородных модельных веществ и тем, что мы знаем о свойствах тяжелых углеводородов нефти в общем наши знания об углеводородах молекулярного веса от 300—1000 довольно ограничены. Каждый, кто применяет для анализа высокомолекулярных продуктов методы, основанные на свойствах синтетических углеводородов, должен быть знаком с этим фактом. Для восполнения пробела необходима большая работа, так как недостаток данных по индивидуальным компонентам становится серьезной помехой при изучении высококипящих нефтяных фракций. Если метод структурно-группового анализа применяется для изучения структурных элементов, которые не могут быть точро определены в нефтяных фракциях, например степень разветвления, то единственно возможным путем является изучение синтетических углеводородов. В этих случаях требуется большое число данных не только о самих чистых веществах, но также и об их смесях. Несмотря на то, что число данных все время увеличивается, как правило, не имеется достаточного экспериментального материала по высокомолекулярным соединениям. [c.369]

    Указанные три типа конденсации в значительной мере обусловли- вают конверсию низкокипящих нефтяных фракций малого удельного веса в высококипящие остаточные тяжелые масла — смолы, пек и т. д. Такие остатки не только с трудом крекируются, но и дают при этом значительные отложения кокса и лишь немного светлых продуктов, и поэтому считается, что их невыгодно перерабатывать с помощью простых термических реакций. Кроме того, следует обратить внимание на канцерогенные свойства остатков, кипящих выше 370° С, что создает дополнительную трудность в их использовании. Диц и др. [7], исследуя различные фракции нефти, нашли (табл. 7), что выход полициклических ароматических углеродов, являющихся основными канцерогенными веществами, увеличивается при каталитическом крекинге фракции 230—500 С нефти Зап. Техаса. Таким образом, хотя свыше 90% сырья содержит менее 3 ароматических колец на молекулу, 67% продуктов крекинга содержат 4 или больше колец на молекулу. [c.109]

    В цитируемой статье Б. П. Воинов [5] приводит таблицу теплосодержания паров нефтяных фракций в интервале от 0° С до 550° С для жидкостей с удельным весом = 1,0 и поправочных коэффициентов, позволяющих быстро определить теплосодержание паров фракций нефти с удельным весом ниже единицы цифровые данные, помещенные в вышеуказанной таблице, вычислены Воиновым по уравнению Уэйра и Итона. [c.62]

    Показатель преломления сам по себе, а также вместе с другими свойствами очень важен при характеристике нефтяных фракций. Для узких фракций с одним и тем же молекулярным весом значения показателя преломления сильно увеличиваются от парафинов к нафтепам и к ароматике значения показателя преломления для полициклических нафтенов и для полициклической ароматики соответственно выше, чем для моноциклических соединений. Для ряда углеводородов по существу того же тина показатель преломления увеличивается с молекулярным весом, но не до высокой степени, особенно для парафинового ряда. Так как для сырых нефтей показатель преломления очень сильно меняется, то при характеристике их это свойство не имеет особого,значения. Если смешать жидкие углеводороды, то объемы конечных растворов аддитивны или почти аддитивны показатели преломления в таких случаях следуют простейшему правилу смешения [141]. Значения для нефтепродуктов широко меняются некоторые значения для узких фракций даны в табл. 1П-5 с другими свойствами для ориентации. [c.184]

    Лабигнов С.Д., Дорочинская Г.С., Баклан О.В., Доманова Л.Г. Расчет парожидкостного равновесия нефтей и нефтяных углеводородов и фракций от их удельного веса и температуры кипения.- Нефтяное хозяйство, 1948, N5, с.48-52. [c.108]

    Планирование нефтепереработки, проектирование нефтеперерабатывающих заводов, правильная их эксплуатация и постоянное совершенствование технологии процессов требуют глубокого знания ст.фья и его потенциальных возможностей. Большую помощь в этом оказывают данные лабораторных исследований, представляемые в виде кривых разгонки нефтей, т. е. кривых ИТК, ОИ, а также графиков плотности, молекулярного веса, вязкости, температура ПСП1.1ШКИ и других констант различных нефтяных фракций. [c.147]

    Растворимость нефтяных фракций во многих обычных органичв- ских растворителях, не содержащих гидроксильных групп, беспрен дельна, в других ограничена. В 1896 г. Ршп и Гальфен показали, что нефть, например, не вполне растворима в смеси из равных объемов хлороформа и 93° спирта. Пределы этой растворимости характерны для различных типов нефтей. Подробные исследования-показали однако, что аналитическое значение метода Риш и Галь-фена невелико и не превосходит по ценности данных, получаемых просто определением уд. веса [Кинд и Вальгис (22)]. [c.133]

    Процесс гидрогенизационного обессеривания различных нефтяных фракций позволяет значительно улучшить качество продуктов. Универсальность применения гидрогенизационного метода для облагораживания нефтяных фракций предопределила быстрый рост мощностей заводских установок гидроо.чистки. Большую роль в развитии гидрогенизационных процессов сыграл также каталитический риформинг бензинов, являющийся поставщиком дешевого водородсодержащего газа. В последние годы значительно увеличился удельный вес мощностей процессов гидрогенизационного облагораживания по отношению к мощностям прямой перегонки нефти. Так, в США с 1960 по 1966 г. он возрос с 19,6 до 28,7% [40]. Ниже приведены данные о распределении мощностей установок гидроочистки США по различным продуктам в 1967 г. [40]. [c.237]

    Стераны и гопаны являются основными источниками оптической активности нефтей. На рис. 56 показано изменение оптической активности нефтяных фракций с увеличением температуры кипения [68]. Хорошо видно, что наибояьшаяГбптическая активность наблюдается для фракции 420—550° С, содержащей углеводороды, имеющие молекулярный вес в диапазоне 350—450 мае. чисел, т. е. углеводороды состава —С35 — стераны и тритерпаны. В этом нет ничего необычного, так как число хиральных центров в этих углеводородах достаточно велико (8—9 в стеранах и 9—10 в гопанах.) К тому же абсолютные величины оптической активности хиральных центров, находящихся в циклической части молекул, обычно весьма велики. Удивление здесь вызывает другое. Каким образом, в условиях катагенеза и вероятного воздействия кислотных катализаторов могла сохраниться оптическая активность Тем более, что ранее была показана большая роль реакций эпимеризации при образовании неф- [c.142]

    Таким образом, если ранее главное внимание исследователей было направлено на изучение низкотемпературной гидрогенизации, то требования на авиабензин с высокими антидетонационными свойствами заставили их переключиться на изучение высокотемпературной гидрогенизации, осуществляемой при температурах порядка 530—54С в паровой фазе. Эта форма процесса приложима лишь к дестиллатным продуктам и совмещает, наряду с крекингом, своеобразный реформинг в присутствии водорода. Благодаря высокой температуре имеет место сдвиг равновесия в сторону дегидрирования, вследствие чего реформинг не приводит к заметному превращению ароматических углеводородов в нафтены. Оказалось, что при те мперату-рах 500—520° процесс гидрогенизации дестиллатов, выкинаю-НЦ1Х до 330°, протекает весьма энергично без всякого отложения ь окса и с высокими выходами бензинов, имеющих повышенный удельный вес и незначительное содержание непредельных углеводородов (5—10%). Так, прп 520° за 2,5 мин. пребывания в зоне реакции нефтяная фракция 174—330°(нефть Эмбенского района), в смеси с рисайклингом в пропорции 1 2 п в присутствии 6 объемов сжатого до 200 атм водорода на 1 объем жидкого продукта, дала выход катализата, выкипающего до 160° в количестве 27% от веса загрузки исходного материала. [c.172]

    Химическая и физическая неоднородность тяжелой части нефти, в которой сконцентрированы все высокомолекулярные соединения, обусловливает главные трудности, возникающие при исследовании химической природы и свойств ее, а также при ее переработке. Особенно сильно сказываются на направлении и скорости превращения отдельных компонентов нефти и на глубине суммарного превращения всего сырья высокие температуры. Даже для сравнительно химически однородного сырья, содержащего компоненты, молекулярные веса которых изменяются в широких пределах (например, парафиновые или циклоиарафиновые нефтяные фракции с широкими пределами выкипания), нелегко подобрать такие условия переработки, которые позволяли бы с одинаковой полнотой использовать все компоненты сырья. [c.16]


Смотреть страницы где упоминается термин Нефть мол. веса нефтяных фракций: [c.310]    [c.45]    [c.129]    [c.68]    [c.46]    [c.204]   
Справочник инженера-химика Том 1 (1937) -- [ c.635 , c.637 ]




ПОИСК





Смотрите так же термины и статьи:

Нефть Нефтяной газ

Нефть фракции



© 2025 chem21.info Реклама на сайте