Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурно-механические свойства коллоидных систем

    Нефтяные дисперсные системы являются гетерогенными системами с высокоразвитыми поверхностями раздела фаз. В этой связи особое внимание при изучении нефтяных дисперсных систем уделяется поверхностным явлениям, в частности исследованию их структурно-механических свойств, обусловленных поведением компонентов нефтяных дисперсных систем на границе раздела фаз. С достаточной вероятностью предполагается, что ключевым вопросом в этих случаях является рассмотрение процессов сорбции-десорбции на межфазных поверхностях. С формированием межфазных слоев можно связать изменение качественных коллоидно-химических характеристик многих нефтяных сырьевых композиций, промежуточных и конечных товарных нефтепродуктов. [c.40]


    Ознакомившись в предыдущей главе с явлениями коагуляции, можно перейти к рассмотрению структурно-механических свойств-дисперсных систем. Ранее этого сделать было нельзя, поскольку образование структур в коллоидных и микрогетерогенных системах является следствием коагуляции этих систем. [c.313]

    Нефть — диэлектрик, ее проводимость равна Ю —10 Ом- -см . Нефть с малым содержанием воды, находящейся в высокодисперсионном состоянии, имеет проводимость 10 —10- Ом -см-. При увеличении содержания воды проводимость нефтеводяной эмульсии возрастает. Нарушение устойчивости водонефтяной эмульсии приводит к разделению ее на две несмешивающиеся жидкости. Время, необходимое для разделения эмульсии на две несмешивающиеся жидкости, характеризует ее агрегативную устойчивость, которая достигается за счет эмульгаторов — веществ, способных стабилизировать капельки воды в нефти, с образованием на границе раздела фаз адсорбционно-сольватных пленок, улучшающих структурно-механические свойства системы. Стабилизаторами нефтяных эмульсий типа В/М являются вещества, находящиеся в нефти в коллоидно-дисперсном состоянии (асфальтены, нафтеновые, асфальтеновые и жирные кислоты, смолы, парафины, церезины). С повышением обводненности нефти увеличивается общая площадь границы раздела вода — нефть (при условии сохранения дисперсности частиц) и уменьшается относительное содержание стабилизатора в системе, что приводит к расслоению эмульсии с выделением воды из газожидкостной смеси. [c.122]

    Коллоидные и микрогетерогенные системы с жидкой и твердой дисперсионной средой, как и все другие конденсированные системы, обладают определенными механическими свойствами — вязкостью,, во многих случаях пластичностью, упругостью и прочностью. Эти свойства связаны со структурой подобных систем, поэтому их часто называют структурно-механическими свойствами. Эти свойства называют еще реологическими, так как учение [c.313]

    Учение о коллоидах было выделено как самостоятельное направление научных исследований немногим более ста лет назад и развивалось на стыке физики и химии. По сути, предметом рассмотрения были дисперсные системы с определенными пределами размеров дисперсной фазы. Направлениями исследований коллоидных систем явились диффузия, сорбция, вязкость, электропроводность, оптические и поверхностные свойства, устойчивость против расслоения и многие другие. Важным разделом коллоидной химии считается коллоидная механика, преобразованная в физико-химическую механику дисперсных систем, изучающая структурообразование в дисперсных системах и их структурно-механические свойства. [c.13]


    Внутренняя структура, а следовательно, и механические свойства коллоидных и дисперсных систем определяются взаимодействием частиц дисперсной фазы с молекулами дисперсионной среды и между собой. Изучению внутренней структуры и строения материалов посвящен раздел коллоидной химии, названный физико-химической механикой. Физико-химическая механика дисперсных систем изучает их реологические свойства в связи с внутренним строением и решает вопросы управления ими с целью получения новых материалов. Значение этого раздела коллоидной химии очень велико и с практической, и с теоретической точки зрения. Такие системы, как цементные растворы, растворы полимеров, глинистые суспензии, лаки, краски, пасты, бумажная масса, почвы, биологические системы, обладают определенной структурой и потому характеризуются особыми структурно-механическими свойствами. [c.427]

    Таким образом, физико-механические свойства всех систем, начиная от высокомолекулярных веществ и их растворов и кончая структурированными дисперсными системами, могут в принципе исследоваться общими методами реологии (реологией называется общее учение о деформации и течении). Такие исследования имеют преимущество перед простыми измерениями аномальной или структурной вязкости неньютоновских жидкостей (рис. 96), потому что структурная вязкость зависит от условий измерения, тогда как реологические константы характеризуют материал независимо от размеров прибора или режима течения. Образование или разрушение различного рода структур или пространственных сеток частиц или молекул с различной прочностью связей и жесткостью структурных элементов играет исключительную роль в дисперсных и полимерных системах и во многих отношениях определяет их техническое использование. Поэтому изучение процессов деформации, их кинетики, частотной зависимости, предельных напряжений и др. имеет большое научное и техническое значение. Установление релаксационного механизма деформации и объективных методов характеристики процессов деформации является существенным успехом коллоидной химии, во многом обусловленном работами советских ученых — Кобеко, Александрова, Каргина, Слонимского, Ребиндера, Соколова, Догадкина и др. [c.251]

    Реологические свойства любой коллоидной системы, в частности нефти, зависят от степени дисперсности распределенных в ней частиц дисперсной фазы. В нефти, как известно, дисперсная фаза представлена частицами асфальтенов [1]. Последние, имеющие большую склонность к ассоциации, взаимодействуют между собой и образуют пространственную структуру коагуляционного типа, вследствие чего нефть приобретает структурно-механические свойства. Эти свойства заметно ослабевают при увеличении степени дисперсности или пептизации асфальтенов []]. Поэтому, наблюдая за изменением дисперсности асфальтенов в нефти, можно судить и об изменении ее структурно-механических свойств, а также определять влияние различных факторов на эти свойства. [c.52]

    Коллоидные и микрогетерогенные системы с жидкой и твердой дисперсионной средой, как и все другие конденсированные системы, обладают определенными механическими свойствами — вязкостью, во многих случаях пластичностью, упругостью и прочностью. Эти свойства связаны со структурой подобных систем, поэтому их часто называют структурно-механическими свойствами. Эти свойства называют еще реологическими, так как учение о течении различных тел или, в более общем виде, о процессах деформации, развивающихся во времени, носит название peo логи и. [c.313]

    Рассмотренные в предыдущих двух главах процессы нарушения агрегативной устойчивости дисперсных систем приводят в одних случаях к их разделению на макрофазы, в других — к развитию в объеме системы пространственной сетки-структуры, т. е. к переходу свободнодисперсной системы в связнодисперсную, в которой силы сцепления в контактах между частицами достаточно велики, чтобы противостоять тепловому движению и внешним воздействиям. При этом наблюдается радикальное изменение свойств дисперсной системы она приобретает комплекс новых — структурно-механических (реологических) свойств, характеризующих сопротивление деформации и разделению на части, т. е. отвечающих ее способности служить материалом. Система приобретает механическую прочность — главное свойство всех твердых тел и материалов, определяющее их роль в природе и в технике. Закономерности структурообразования в дисперсных системах, механические свойства структурированных систем и получаемых на их основе разнообразных материалов, с особым вниманием к роли физико-химических явлений на границе раздела фаз, изучает обширный самостоятельный раздел коллоидной химии, названный физико-химической механикой. [c.306]


    Ясно, что формирование остаточной нефти в промытых зонах определяется также свойствами самой нефти. Компонентный состав, дисперсное строение, содержание тяжелых фракций, наличие полярных асфапьтено-смолистых вешеств являются факторами, влияющими на структурно-механические свойства капель и пленок нефти и на межфазное натяжение. В частности, содержание и структура асфагть-тенов и смол имеет принципиальное значение для процесса вытеснения, поскольку именно в этих компонентах сосредоточена большая часть полярных и поверхностно-активных веществ, оказывающих стабилизирующее воздействие на коллоидные системы и усиливающих адсорбцию нефти на поверхности породы. [c.33]

    Изучая реологические свойства коллоидных систем, можно определить характер образовавшихся в них структур. Значение реологических свойств коллоидных систем важно и с практической стороны. Такие важные системы, как почва, формовочные глины, цементный раствор, краски, лаки, пасты, характеризуются рядом особых структурно-механических свойств. [c.314]

    Закон Ньютона обычно нарушается при течении коллоидных растворов с удлиненными частицами дисперсной фазы, способными деформироваться в поле напряжений и структурированных систем. Такие коллоидные системы обладают определенными механическими свойствами - пластичностью, упругостью, прочностью и вязкостью. Эти свойства в большинстве случаев связаны с образованием структуры в жидкости, и поэтому их часто называют структурно -механическими или реологическими свойствами. [c.11]

    В отличие от масел пластичные смазки (в дальнейшем смазки) являются, как правило, сложной коллоидной системой, обладающей специфическими структурно-механическими свойствами и состоящей из дисперсионной среды и дисперсной фазы—загустителя. В качестве загустителя используют твердые мыла индивидуальных жирных кислот, их комплексы или смеси, твердые углеводороды, силикагель, полимерные материалы, пигменты, глины и пр. Дисперсионной (жидкой) средой служат в основном минеральные масла различного назначения и группового состава, а также синтетические жидкости или сложные эфиры. [c.114]

    Механические свойства периодической структуры определяются наличием в ней пространственной сетки из взаимодействующих дисперсных частиц и жидких прослоек [69]. Прочность системы зависит прежде всего от энергии связи между частицами, которая, в свою очередь, является функцией природы, размера и формы последних, а также свойств адсорбционных слоев. Опыт показывает, что химическая природа некоторых коллоидных структур (почвы, керамические массы) оказывает небольшое влияние на их структурно-механические свойства и минералогический состав, но степень дисперсности и форма частиц во многом определяет эти свойства 8, 10]. Такая зависимость свидетельствует о близости сил притяжения у родственных веществ (глинистых минералов), а также о важном значении геометрических параметров микрообъектов для энергетики дисперсной системы, что было рассмотрено в главе И и обсуждено в работе [410]. [c.97]

    В коллоидных растворах, суспензиях и в растворах высокомолекулярных соединений самопроизвольно или в результате внешних воздействий происходит образование тех или иных структур, которые придают дисперсным системам своеобразные физико-механические свойства прочность, упругость (эластичность), пластичность, вязкость. Эти свойства получили название структурно-механических, или реологических. Изучение структурно-механических свойств дисперсных систем имеет большое значение для биологии, медицины, почвоведения и самых разнообразных областей современной техники. [c.361]

    Аналогичное влияние оказывают поверхностно-активные вещества. Изменение гидрофильности поверхности частиц золя в данном случае зависит от ориентации молекул поверхностно-активных веществ в адсорбционном слое. Увеличение гидрофильности и возрастание устойчивости коллоидных частиц в водных системах наблюдается, если полярные группы адсорбированных соединений обращены в сторону дисперсионной среды. Работами П. А. Ребиндера и сотрудников установлено, что ориентация приобретает особое значение при образовании молекулами поверхност-но-активных веществ в адсорбционных слоях двухмерных гелеобразных структур, обладающих повышенными структурно-механическими свойствами [17].  [c.122]

    Консистентные смазки, как коллоидные системы, обладают тиксо-тропными свойствами. При перемешивании и других механических воздействиях первоначальная их структура нарушается, после более или менее длительного пребывания в покое она восстанавливается. Однако при тиксотропном восстановлении механические свойства консистентных смазок далеко не всегда достигают первоначальных значений, имевшихся до нарушения структуры. Это можно объяснить тем, что не все связи структурного каркаса консистентной смазки, разрушенные при механическом воздействии, способны к полному восстановлению. [c.196]

    Структурно-механическая прочность и агрегативная устойчивость нефтяных дисперсных систем. Одной из основных проблем коллоидной химии нефтей и их фракций является исследование, пространственных структур различного рода в нефтяных дисперсных системах и регулирование разнообразными приемами их механических свойств деформационных и прочностных. Необходимость решения данной проблемы способствовала становлению самостоятельной области коллоидной химии — физико-химической механики нефтяных дисперсных систем. Обобщение значительного эмпирического материала позволило в работе [112] предложить с точки зрения макрореологии (диаграмму изменения структурномеханической прочности с ростом температуры в многокомпонентных нефтяных дисперсных системах (рис. 5). Участок ВГ, имеющий различную ширину в зависимости от строения исследуемой нефтяной системы и вырождающийся в точку для битумов, характеризует ньютоновское поведение в полностью разрушенной структуре, вязкость которой не зависит от скорости сдвига. Точка В отвечает пределу текучести системы. С понижением температуры нефтяная система становится тгересыщенной по отношению к твердым углеводородам, выделение которых из однородного с реологической точки зрения расплава приводит к структурированию системы. На участке БВ взаимодействие формирующихся структурных элементов обуславливает вязкопластическое течение обратимо разрушаемой структуры и наличие предельного напряжения сдвига в точке Б. По мере снижения температуры на этом участке скорость формирования коагуляционных контактов мел ду надмоле- кулярными структурами превышает скорость их разрушения под действием механической нагрузки. В точке Б нефтяная система те- [c.38]

    Механические свойства консистентных смазок, поскольку они являются коллоидными системами, не могут быть определены однозначно какой-либо одной величиной даже нри заданных температуре и давлении. Для всех коллоидных систем типична так называемая структурная вязкость (внутреннее трение), изменяющаяся с изменением градиента скорости. Для пластич- [c.698]

    Наибольшее практическое значение имеют структурно-механические, или реологические, свойства буровых жидкостей. Специфика коллоидно-дисперсных и микрогетерогенных систем предопределяет их промежуточное положение между истинно твердыми и истинно жидкими телами. Они обладают вязкостью, пластичностью, упругостью и прочностью. Важнейшей особенностью коллоидных систем является аномалия вязкости. Их вязкость не является постоянной величиной, а зависит от градиента скорости. Для многих коллоидных систем, образующих пространственные структуры, характерно наличие предела текучести, т. е. напряжения сдвига, ниже которого движение не происходит. Аномалия обусловлена наличием в коллоидных системах структурных сеток, образуемых дисперсной фазой. [c.5]

    Способность к набуханию — есть свойство полимера, определяемое его составом и строением, как и структурно-механические его свойства. Причиной набухания является не простое механическое вхождение НМС в пустоты или поры (которых в полимере, в сущности, нет), а межмолекулярное взаимодействие, обусловленное главным образом сольватацией макромолекул. Доказательство коллоидно-химической (а не физической) природы этого процесса — выделение теплоты набухания и уменьшение общего объема системы (контракция), связанное с ориентацией НМС. Поэтому процесс набухания всегда специфичен. [c.299]

    Растворы полимеров при течении обнаруживают ряд аномалий, природа которых легко может быть объяснена после того, как определены особенности механических свойств самих полимеров. Как известно, растворы полимеров обладают структурной вязкостью и не подчиняются закону вязкости Ньютона. Обычно эти аномалии пытаются объяснить возникновением структур в коллоидных растворах. Однако, хотя структурообразование безусловно существует в коллоидных системах, оно не является единственной причиной упомянутых аномалий. Очень часто, в случае растворов полимеров, эти эффекты вызваны проявлением релаксационных свойств полимерных. молекул в растворе. [c.88]

    П. А. Ребиндеру принадлежит важная роль в формировании комплекса ведущи идей современной коллоидной химии о механизмах действия ПАВ, об образуемо ими структурно-механическом барьере как факторе стабили ации дисперсных систел о возникновении пространственных структур в дисперсных системах в результат, сцепления частиц, о влиянии среды на механические свойства твердых тел (эффек, Ребиндера). Одним из итогов развития этих идей было выделение новой области физико-химической механики дисперсных систем и твердых тел — науки об управлении структурно-механическими свойствами материалов и течением химико-технологн-чсских процессов в гетерогенных системах с помощью оптимального сочетания механических воздействий и физико-химических факторов (явлений на границах раздела фаз). Результаты исследований Ребиндера и его многочисленных учеников и последователей в различных направлениях коллоидной химии и физико-химической механики, отраженные в соответствующих гла.нах кил.ги, имели большое значение в стаи-ов-лении коллоидной химии как современной науки о дисперсном состоянии вещества и поверхностных явлениях в дисперсных системах. [c.11]

    Изучение изменения структурно-механических свойств плгстичных смазок и других коллоидных систем под влиянием добавок различных поверхностно-активных веществ (ПАВ) позволило выявить общий механизм их действия. Согласно [1], в основе этого действия лежит эффект пептизании и стабилизации структурных элементов коллоидных систем. Малые добавки ПАВ вызывают повышение прочности системы вследствие пептизации, т. е. увеличения числа контактов в единице объема. Увеличение концентрации добавок ПАВ повышает их адсорбцию иа частицах загустителя смазок, что препятствует связи структурных элементов. Снижение силы взаимодействия частиц вызывает падение прочности системы. [c.56]

    Многочисленные исследования изменения структурно-механических свойств смазок [17, 20, 21, 34, 35] и других коллоидных систем [7, 14, 40] под влиянием различных ПАВ выявили общий механизм их действий. Согласно П. А. Ребиндеру, в основе этого действия лежит эффект пентизации и стабилизации структурных элементов [14]. Малые концентрации ПАВ или добавок резко повыща-ют прочность вследствие пентизации и увеличения числа контактов частиц в единице объема системы. Увеличение концентрации ПАВ препятствует взаимодействию частиц за счет усиления адсорбции и понижает прочность коллоидной системы. [c.22]

    Специфической особенностью пластичных смазок является изменение их реологических характеристик при механическом разрушении и последующем отдыхе . Пластичные смазки в процессе работы в узлах трения резко меняют свои структурно-механические свойства предел прочности и вязкость уменьшаются, а при отдыхе опять возрастают. В коллоидной химии разрушающиеся и самопроизвольно восстанавливающиеся системы называют тнксотропными. Поэтому под тиксотропными свойствами смазок понимают их способность к изменению структурно-механических свойств под воздействием нагрузки и после ее снятия. [c.95]

    К коллоидным системам относятся, таким образом, два основных типа систем. Первому типу—г етеро генным высокодисперсным системам—соответствует тип укрупнения частиц путем образования трехмерных и двухмерных структур в инертной среде. Он характеризуется наличием развитой поверхности раздела. Условие высокодисперсности отделяет коллоидные системы от грубых, быстро оседающих, суспензий и порошков с низкой кинетической устойчивостью. Ввиду наличия частиц со свободной поверхностной энергией коллоидные дисперсные системы являются термодинамически неустойчивыми, потому что стремление этой энергии к уменьшению приводит к агрегации частиц. Частицы ее будут слипаться, т. е. будут агрегативно устойчивыми лишь нри условии, что на их поверхности за счет свободной поверхностной энергии адсорбируются молекулы или ионы третьего компонента системы или стабилизатора. Однако по истечении достаточного промежутка времени (путем рекристаллизации и др.) процесс слипания неизбежно будет происходить. В этом смысле коллоидные дисперсные системы являются необратимыми системами. Влияние поверхностных слоев иа свойства коллоидных систем, а также их структурно-механические свойства изучались в работе Ребиндера и его школы. [c.194]

    Выражение (III.3) является более универсальным, т. е. применяемым как к разбавленным коллоидным системам, так и к ВКДС. Выражения (1П.2) и (III.3) показывают, что если для разбавленных коллоидов изменение энергии связи между частицами — необходимое и достаточное условие управления их свойствами, то для ВКДС определяющим становится действие факторов, ответственных за и № 4. Для высококонцентрированных структурированных дисперсных систем изменение силы связи в контактах с помощью физико-химических воздействий — необходимое, но уже не достаточное условие управления их структурно-механическими свойствами. Эксперименталь- [c.97]

    В дальнейшем торф стал одним из важнейших объектов коллоидной химии, в особенности при изучении гидрофильности дисперсных систем, связанной воды, адсорбционных, структурно-механических ионообменных и других свойств торфа. Последний, являясь сложной многокомпонентной полуколлоидной высокомолекулярной системой с признаками полиэлектролитов и включениями минеральных составляющих, был всесторонне изучен и составил новый раздел коллоидной науки — коллоидную химию торфа (М. П. Воларович, Н. В. Чураев, И. И. Лиштван, Н. И. Гамаюнов, П. И. Белькевич и др.). [c.13]

    Адсорбционно-сольватный фактор агрегативной устойчивости коллоидных систем связан с образованием на межфазной поверхности слоев из молекул или ионов. Адсорбционно-сольватные слои обладают особыми свойствами. Они имеют высокую прочность, молекулы в них взаимодействуют между собой более энергично и поэтому менее подвижны. В их составе могут быть кристаллические образования. Формирование таких слоев происходит в результате определенного взаимодействия между веществом дисперсной фазы и дисперсионной средой. Определенная ориентация молекул в слоях способствует проявлению особых механических свойств, а именно повышению вязкости, упругости, сопротивления сдвигу. Развитые адсорбционно-сольватные слои препятствуют сближению коллоидных частиц, т. е. способствуют повышению устойчивости коллоидной системы. Образование прочных адсорбционно-сольватных слоев характерно для гидроксидов таких металлов, как алюминий, железо и др. Согласно теории, разработанной П. А. Ребиндером и его школой, адсорбционно-сольватные слои представляют собой двумерные квазикристаллические структуры. Адсорбционно-сольватные слои могут образовываться и крупными молекулами органических веществ. Эти ориентированные слои не разрушаются при сближении коллоидных частиц, они создают структурно-механиче-1СКИЙ барьер, препятствующий их агрегации. Соединения, входящие в состав адсорбционно-сольватных слоев, называются стабилизаторами. [c.116]

    Концентрированные растворы, гели, коллоидные дисперсии полимеров. Переход от разбавленных растворов макромолекул к концентрированным. Ассоциация макромолекул в концентрированньк растворах и структурообразование. Жидкокристаллическое состояние жесткоцепных полимеров. Лиотропные жидкокристаллические системы и их фазовые диаграммы. Структура концентрированных растворов и гелей. Особенности течения концентрированных растворов. Механические свойства гелей и их структурная интерпретация. Сходство и различия между концентрированными растворами и гелями. Хемомеханические свойства гелей полиэлектролитов. [c.382]


Смотреть страницы где упоминается термин Структурно-механические свойства коллоидных систем: [c.331]    [c.9]    [c.43]    [c.255]    [c.331]    [c.699]    [c.365]    [c.39]    [c.340]    [c.22]    [c.222]    [c.33]    [c.237]   
Смотреть главы в:

Руководство к практическим работам по коллоидной химии -> Структурно-механические свойства коллоидных систем

Руководство к практическим работам по коллоидной химии Издание 2 -> Структурно-механические свойства коллоидных систем




ПОИСК





Смотрите так же термины и статьи:

Коллоидные механические

Системы коллоидные

Системы свойства

Структурно-механические свойства



© 2025 chem21.info Реклама на сайте