Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислотный и основной катализ гидролиза сложных эфиров

    ХП1.9.2. Кислотный и основной катализ гидролиза сложных эфиров [c.786]

    Суммарный общий основной и кислотный катализ гидролиза сложных эфиров карбоновых кислот [c.94]

    Классификация каталитических реакций. Катализ делят на гомогенный и гетерогенный. Гомогенный катализ можно разделить на кислотно-основной (его вызывают кислоты и основания), окислительно-восстановительный (его вызывают соединения металлов переменной валентности), координационный (катализаторы — комплексные соединения), гомогенный газофазный (катализаторы — химически активные газы, такие, как N62, ВГз и т. д.) и ферментативный. Деление это не строго, так как одна и та же реакция, например гидролиз сложного эфира, может в зависимости от катализатора— кислоты, комплекса или фермента — попасть в ту или иную группу, [c.169]


    В кислотно-основном Г. к. под действием катализатора обычно усиливаются электроф. или нуклеоф. св-ва молекул реагентов. К-ты и основания, ускоряющие такие р-ции, могут служить катализаторами в недиссоциированной форме (общий кислотно-основной катализ) либо воздействовать на субстрат ионами Н3О и ОН (специфич. кислотно-ос-новной катализ). Напр., при кислотном гидролизе сложных эфиров каталитич. действие к-ты НА связано с протонированием карбонильной группы, что облегчает последующее присоединение воды  [c.592]

    В активных центрах ферментов содержится обычно две или более каталитических групп. Они могут воздействовать на субстратную группу двумя совершенно различными путями. Один из них заключается в том, что нуклеофильный, или общий основной катализ протекает одновременно с общим кислотным, в одном и том же переходном состоянии. Механизм этого типа, приложимый к гидролизу сложных эфиров, представлен в (15). Этот механизм часто постулировался в качестве вероятной модели катализа более чем одной функциональной группой, однако при исследовании модельных систем не было получено серьезных свидетельств в его поддержку [32]. Для реакций, подверженных нуклеофильному или общему основному катализу, общий кислотный катализ не характерен (и наоборот). Другой способ предусматривает действие двух каталитических групп по отдельности на различных стадиях сложной реакции. Если одна из групп специфично действует на скоростьопределяющей стадии такой реакции, в результате чего скоростьопределяющей становится уже следующая стадия, то именно на последней необходимо действие второй каталитической группы (примером такого процесса является описанный в предыдущем разделе гидролиз сложных эфиров диметилмалеиновой кислоты). [c.471]

    Если гидролиз сложного эфира, имеющего хиральный центр в заместителе К, проводится в условиях основного или кислотного катализа, но в отсутствие липазы, то оба энантиомера реагируют с одинаковой скоростью и неразличимы. Однако если проводить гидролиз в присутствии липазы, в реакцию вступает лишь один из энантиомеров. [c.205]

    Гидролиз сложных эфиров был объектом неизмеримо большего числа исследований, что вызывалось, с одной стороны, чисто практическими потребностями, в частности задачами получения на основе жиров свободных кислот, глицерина и мыл, с другой стороны, требованиями развития теории кислотно-основного катализа. Исследования гидролиза жиров под влиянием кислот и оснований в практических целях широко освещены в литературе [106—108], поэтому здесь нет необходимости на них останавливаться подробно. [c.280]


    Изучение кинетики гидролиза сложных эфиров сыграло важную роль в развитии теоретических представлений в области катализа вообще, а гомогенного катализа в растворах в особенности. Реакции кислотного гидролиза сложных эфиров и инверсии сахара послужили главными объектами, на которых происходило исследование каталитического действия кислот и оснований, а также изучение солевого эффекта. В основном при изучении именно этих реакций была создана современная теория гомогенного кислотно-основного катализа. [c.282]

    Гидролиз сложных эфиров катализируется большим числом агентов, таких, как кислоты, основания, энзимы. Кислотный и основной катализ в водных растворах, осуществляемый ионами Н3О+ и ОН , — большой специальный [c.313]

    Распад спиртов, гидролиз сложных эфиров и конденсация карбонильных соединений может осуществляться как на кислотных, так и на основных катализаторах, что дает основание отнести эти реакции к категории общего кислотно-основного катализа. [c.302]

    Различают кислотно-основный катализ (переход протона от реагента к катализатору или обратное перемещение, а в случае кислотообразователей — взаимодействие через свободную электронную пару) и окислительно-восстановительный катализ, когда промежуточным взаимодействием является электронный переход между реагирующим веществом и катализатором (наибольшей каталитической активностью обладают металлы 4-го, 5-го и 6-го периодов с недостроенной -оболоч-кой и их соединения). Примером первых является гидролиз сложных эфиров, ускоряемый кислотами, примером вторых — окисление ЗОз в 50з. [c.156]

    Некоторые примеры зависимости Ig at от pH реакций со специфическим кислотно-основным катализом приведены на рис. 9.2. Гидролиз сложных эфиров соответствует кривой 1 из рисунка видно, что каталитическое действие на него оказывают и кислоты и основания. Инверсия сахара, как следует из кривой 2, катализируется только кислотами альдольная конденсация ацетальдегида —только основаниями (кривая 3) кривая 4 показывает, что для мутаротации глюкозы существует интервал значений pH, в котором кислотные и основные катализаторы на скорость реакции не влияют. [c.144]

    Главная причина несовпадения классической теории с опытом была устранена благодаря открытию того факта, что не только ионы Н3О+ и 0Н обладают каталитическим действием, а что это свойство присуще всем протонодонорным и протоноакцепторным частицам, содержащимся в данном растворе, т.е. и нейтральной неионизированной кислоте, а также и ее анионам. Каждая каталитически действующая частица обладает действием, пропорциональным ее концентрации, или, точнее, ее активности (X. М. Доусон, 1913 г. И. М. Бренстед К. И. Педерсен, 1923 г. Т. М. Лоури, 1923 г.). Такой тип каталитической реакции называется общим кислотно-основным катализом. К первым исследованным примерам относятся мутаротация глюкозы, йодирование ацетона, гидролиз сложных эфиров и т.д. Исследование этих реакций привело, как уже отмечалось выше, к необходимости создания новой теории кислот и оснований. [c.221]

    Кинетика гидролиза эфиров сравнительно сложна. Как впервые наблюдал Аррениус (1889 г.), при гидролизе (и при этерификации) эфиров, катализируемом слабыми кислотами, скорость реакции сильно возрастает в присутствии нейтральных солей (солевой эффект). С другой стороны, реакция катализируется не только ионами Н" " и Н0 (являющимися, однако, наиболее сильными катализаторами), но и остальными кислыми или основными частицами раствора и даже водой. Это привело к открытию общего кислотно-основного катализа (X. М. Доусон, 1927 г. см. стр. 222). Последовательное применение теории сильных электролитов позволило полностью выяснить катализ в этой реакции (И. Н. Бренстед, 1928 г.). [c.763]

    Теоретически возможны четыре механизма для катализируемой кислотой этерификации и восемь механизмов для гидролиза сложного эфира, включающих как кислотный, так и основной катализ, и большинство этих механизмов экспериментально наблюдалось. Ниже будут рассмотрены лишь самые обычные из них и вкратце будут упомянуты факторы, благоприятствующие осуществлению того или иного из остальных механизмов. Наиболее обычным для этерификации является разрыв связи ацил — кислород, и реальность этого механизма была доказана тем, что при этерификации 0-алканола 0-вода не образуется, что было бы неизбежным, если бы происходил разрыв связи алкил — кислород. Для катализируемого кислотой гидролиза сложных эфиров обычным является механизм, обратный указанному механизму этерификации. Если принять, что протонирование кислоты или сложного эфира осуществляется по карбонильному кислороду, а не по кислороду окси-или алкоксигруппы, то можно представить механизмы этих реакций следующим образом  [c.401]


    Кислотно-основной катализ заключается в том, что кислота отдает протон, присоединяющийся к молекуле субстрата. Затем происходит внутримолекулярное превращение, связанное с изменением характера и расположения связей, и, наконец, протон отщепляется от другой точки молекулы и присоединяется к сопряженному основанию. Примером кислотно-основного катализа может служить омыление (гидролиз) сложных эфиров. Омыление сложного /О [c.280]

    Один из основателей физ. химии. Работы посвящены гл. обр. развитию теории электролитической диссоциации, кинетике и катализу. Изучал (1884—1886) условия хим. равновесий и установил колич. соотношения между электрической проводимостью р-ров к-т и их каталитической активностью в р-циях гидролиза сложных эфиров и сахаров. Впервые связал причины кислотного катализа с особой ролью водородного атома к-т. После появления теории электролитической диссоциации создал (1886—1887) основы теории кислотно-осн. катализа посредством водородного и гидроксильного ионов. Предложил (1887—1888) электрохимический способ определения основности кислот. [c.332]

    Таким образом, бимолекулярная (с учетом катализатора) элементарная реакция идет, как мономолекулярная, а тримолекуляр-ная (также с учетом катализатора) — как бимолекулярная. В условиях специфического кислотно-основного катализа идут реакции замещения, рацемизации (инверсия тростникового сахара, стр. 248), омыления (гидролиз) сложного эфира (стр. 253). [c.228]

    Гораздо большее значение имеет катализ в жидкой фазе, в растворе. Здесь катализаторами служат в большинстве случаев ионы. Поэтому понятно, что первое место занимает ион Н (НзО+) как наиболее мощный деформатор-поляризатор, обладающий маг.с .мальной величиной напряженности поля е/г и наибольшей подвижностью в растворе. По этим же причинам мощным катализатором являются и гидроксид-ионы ОН . С действием этих двух ионов и связан в первую очередь кислотно-основной катализ в растворах. Примерами являются гидролиз сложных эфиров и многочисленные реакции окисления и восстановления в растворах. [c.288]

    Г идролиз сложного Кислотно-основной катализ. Многие реакции катали-эфира - это пример зируются кислотами или основаниями. Примером гомогенного к.зтали п может служить гидролиз сложного эфира с образованием карбоновой кислоты и спирта или фенола  [c.345]

    Тетраэдрические интермедиаты, возникающие в процессе гидролиза сложных эфиров, представляют собой полуортоэфиры, например Me (0H)20Et при гидролизе этилацетата. Мы можем поэтому предполагать общий кислотный катализ, присущий гидролизу интермедиатов этого типа, на второй стадии этой и подобных ей реакций. Такой катализ обычно не удается наблюдать просто потому, что первая стадия общего основного катализа, безусловно, определяет скорость всего процесса. Распад тетраэдрического интермедиата происходит, таким образом, слищком быстро, чтобы вносить заметный вклад в кинетику реакции. С другой стороны, в реакциях гидролиза, катализируемых ферментами, стадия, определяющая скорость процесса, непременно будет ускорена, и другие, обычно быстрые процессы, должны также катализироваться. В противном случае они будут понижать эффективность всего процесса. [c.464]

    Как мы уже убедились, в случае гидролиза сложного эфира, катализируемого соседней карбоксильной группой, активной формой внутримолекулярного катализатора является СО - Поэтому соединение, содержащее сложноэфирную и ионизованную кислотную группы, гидролизуется быстрее соответствующей недиссоциирован-ной формы. Зависимость константы скорости гидролиза от pH представлена на рис. 24.1.5. При высоких и низких значениях pH наблюдаются реакции специфического кислотного и основного катализа. Скорость реакции в рН-независимой области (А) выше, чем в случае отсутствия карбоксильной группы в этом соединении. Величина такого ускорения [(В) на рис. 24.1.5] является мерой эффективности внутримолекулярного катализа. Если группа СО2Н не катализирует реакцию, то при низких значениях pH ускорения не наблюдается. Поэтому в области рКа группы СО2Н с понижением pH скорость реакции падает пропорционально понижению концентрации реакционноспособной ионизованной формы. В другом случае, если группа СО9Н, напротив, активна, а С07 неактивна или менее активна, скорость реакции возрастает при низких значениях pH (рис. 24.1.6). Таким образом, по виду рН-зависимости можно сделать вывод об относительной реакционной способности двух ионных форм каталитической группы, а также о ее константе диссоциации. [c.472]

    Кривая (А) — колоколообразная зависимость реакции гидролиза этилового эфира Л -бензоиларгинина. катализируемой папаииом построена по параметру Кривая (В) — ожидаемая рН-зависимость гидролиза этого сложного эфира. Ясно виден контраст между ферментативным н специфическим кислотно-основным катализом. Масштаб в условных единицах, одиако ферментативная реакция, естественно, протекает на много порядков быстрее. [c.477]

    Тем не менее в сложных эфирах карбоновых кислот карбонильная группа сохраняет те же особенности, что и в альдегидах и кетонах углерод в ней обладает электрофильными свойствами (это подтверждается тем, что сложные эфиры способны выступать в качестве ацилирующих агентов в реакциях с аминами, гидразином и другими сильными нуклеофилами), а кислород — основными (кислотный катализ при гидролизе сложных эфиров и при пере-этерификации). Однако карбонильная группа в сложных эфирах реагирует с нуклеофилами не так, как в альдегидах и кетонах. Как уже отмечалось, для последних характерно присоединение по двойной углерод-кислородной саязи, сопровождающееся исчезновением карбонильной группы, например  [c.183]

    Кислотный и основной катализ. В органической химии имеют огромное значение реакции, катализируемые кислотами или основаниями, а часто и теми и другими веществами. К реакциям такого рода относятся реакции этерификации, гидролиз сложных эфиров, ангидридов кислот, амидов, нитрилов, галоидных алкилов и ацилов, множество реакций присоединения по карбонильной группе, конденсации типа Кляйзена, Перкина и Михаэля, альдольные конденсации, реакции полимеризации непредельных соединений и многие другие. [c.122]

    Видно, что во всех случаях при переходе от метильной группы к яг/)ет-бутильной наблюдается заметное падение скоростей реакций, причем практически безразлично, находится ли пространственно экранирующая группа в углеводородной или в спиртовой части сложного эфира. Правда, из приведенных в табл. 6.2 величин видно, что при кислотно катализируемых реакциях (колонки II и IV) реакционная способность понижается в меныЬей степени. Это нельзя объяснить объемом атакующего заместителя, так как ОН-группа, действующая при основном катализе, несомненно, меньше молекулы воды, вступающей к протонированной карбоксильной группе при реакциях, катализируемых кислотами. Как подробно обсуждалось в разд. 2.6.2.2.1, при кислотном гидролизе примерно компенсируются противоположные полярные влияния заместителей на основность карбонильного атома кислорода и реакционную способность карбонильного углерода по отношению к нуклеофилам. Поэтому катализируемые кислотами реакции гидролиза сложных эфиров имеют константу реакции, примерно равную нулю. [c.311]

    Классификацйя каталитических процессов. Природа химич. взаимодействия реагирующих в-в с катализатором весьма разнообразна. Обычно различают ио характеру промежуточного взаимодействия две группы каталитич. реакций — кислотно-основного и окислительно-восстановительного К. В реакциях первой группы имеет место промежуточное кислотно-основное взаимодействие реагирующих в-в с катализатором, т. е. переход протона от катализатора к одному из реагирующих веществ илп, наоборот, от реагирующего вещества к катализатору. При последующих стадиях каталитич. реакции протон перемещается в обратном направлении и катализатор восстанавливает свой состав. При катализе анротонными кислотами взаимодействие осуществляется через свободную нару электронов реагирующего в-ва. Примерами киспотио-основпого катализа могут служить гидролиз сложных эфиров, ускоряемый кислотами, гидратация олефинов в присутствии фосфорно-кислотных катализаторов, изомеризация и крекинг углеводородов на алюмосиликатных катализаторах и мн. др. реакции. Для многих реакций кислотно-основного К. удалось установить связь между кислотностью катализатора и его каталитич. активностью (подробнее см. Катализ кислотно-основной). [c.229]

    По механизму специфического кислотного катализа протекает реакция инверсии сахарозы, гидролиз ацеталей, гидратация ненасыщенных альдегидов. По механизму специфического основного катализа протекает альдольная конденсация, гидратация альдегидов, гидролиз сложных эфиров. [c.391]

    Нуклеофильный и общий основной катализ составляют два из трех механизмов, выявленных при работе в модельных системах. Третий механизм — это общий кислотный катализ. Этот механизм обычно не наблюдается в реакциях сложных эфиров, но имеет больщое значение при гидролизе ортоэфиров и некоторых ацеталей [22]. Так, гидролиз этилортоацетата (4) катализируется кислым компонентом нитрофенольных буферов [23] и, как принято считать, протекает по механизму общего кислотного катализа [22] схема (10) . Согласно этому механизму, обратному общему основному катализу превращение (4) в (5) и затем обратно (5) в (4) через одно и то же переходное состояние , катализатор посредством протонирования превращает плохую уходящую группу в хорощую. В отличие от специфического кислотного катализа, который зависит только от pH и не зависит от концентрации обобщенной кислоты (в данном случае фенола), здесь стадии переноса прогона и разрыва связи С—О согласованы. [c.464]

    При основном и нуклеофильном катализе гидролиза (расщепления) сложных эфиров, галогенангидридов, органических амидов и этерификации карбоновых кислот, как и в случае кислотного катализа, замещение связи при ацильной и алкильной группах соответственно обозначаются символами Ас и Alk, а молекулярность — цифрами 2 и 1. [c.437]


Смотреть страницы где упоминается термин Кислотный и основной катализ гидролиза сложных эфиров: [c.182]    [c.300]    [c.302]    [c.279]    [c.301]    [c.1452]    [c.377]    [c.377]    [c.376]    [c.457]    [c.151]    [c.229]    [c.304]   
Смотреть главы в:

Физическая химия. Теоретическое и практическое руководство -> Кислотный и основной катализ гидролиза сложных эфиров




ПОИСК





Смотрите так же термины и статьи:

Катализ кислотно основный

Катализ кислотно-основной

Катализ кислотный

Кислотно-основное

ЛИЗ кислотно основной

Сложные гидролиз



© 2025 chem21.info Реклама на сайте