Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фильтрование суспензий

    II ступени фильтрования. Суспензия твердых углеводородов, выходящая из кристаллизатора 2 сверху, охлаждается в аммиачных кристаллизаторах 3 и 4 за счет испарения хладагента (аммиак или пропан) до температуры фильтрования и собирается в приемнике 6, откуда самотеком поступает в фильтры 7 ступени I. Уровень суспензии в вакуумных фильтрах регулируется регулятором уровня, связанным с линией ее подачи. Фильтрат I ступени (раствор депарафинированного масла) поступает в вакуум-приемник И, откуда насосом 13 подается через теплообменник 16, где охлаждается растворитель для разбавления сырья, в приемник 18, из которого раствор депарафинированного масла направляется в секцию регенерации растворителя. [c.86]


    Фильтрование при постоянной разности давлений и одновременно при постоянной скорости процесса можно осуществить, если перед началом фильтрования суспензия расслаивается под действием силы тяжести, причем на горизонтальной фильтровальной перегородке образуются нижний слой осадка и верхний слой чистой жидкости. [c.27]

    Рассмотрим в сокращенном виде некоторые закономерности разделения фильтрованием суспензий, дающих сжимаемые осадки, применительно к опытам на фильтре с поршнем. В данной связи различают разделение суспензий с небольшой, средней и большой концентрацией [50]. [c.59]

    Исследовано удельное сопротивление осадков, образующихся при разделении фильтрованием суспензий различных полупродуктов для красителей, а также суспензий нефелина, фосфогипса и доменного щлака [175]. Размер твердых частиц суспензий составлял 1,2—22,5 мкм, разность давлений изменялась в пределах 1,3-10 —6,5-10 Па. Установлена зависимость [c.177]

    Исследовано [216] влияние агрегации на удельное сопротивление осадка, полученного при разделении фильтрованием суспензии частиц пустой породы (концентрация 58—60% содержание твердых частиц, проходящих через сито с отверстиями 0,074 мм, 55— 57%) в водном растворе солей урана, имеющем рН= 1,875—1,99. Обнаружено, что с течением времени происходит обратный процесс пептизации это приводит к увеличению удельного сопротивления осадка. [c.194]

    При фильтровании суспензии, содержащей жидкую фазу с большой вязкостью, течение жидкости через поры осадка и фильтровальной перегородки происходит медленно и фильтр работает с относительно небольшой производительностью. При фильтровании суспензии, содержащей жидкую фазу с небольшой вязкостью, но характеризующейся высоким объемным содержанием твердых частиц, жидкость протекает через поры осадка и фильтровальной перегородки с достаточной скоростью и фильтр работает с относительно хорошей производительностью. В этом случае в особенности повышается производительность фильтра по осадку, так как процесс разделения проводится при благоприятном отношении объема осадка к объему фильтрата. Таким образом, при разделении суспензии, отличающейся большой вязкостью, неблагоприятное влияние на скорость фильтрования оказывает большая вязкость ее жидкой фазы. [c.301]


    I — выход дистиллятного депарафинированного масла 2 — то же для остаточного масла 3 — скорость фильтрования суспензии дистиллятного рафината 4 — то же остаточного рафината. [c.148]

    Дальнейшее понижение температуры приводит к агрегации кристаллов с образованием пространственной структуры, связывающей жидкую фазу, и вязкость системы возрастает. Однако добавление следующей порции растворителя в количестве, не превышающем половины объема сырья, приводит к разделению системы на отдельные агрегаты кристаллов. В табл. 20 дана схема разбавления остаточного рафината растворителем, из которой следует, что скорость фильтрования суспензий твердых углеводородов зависит от их структурной вязкости, которая, в свою очередь, определяется способом подачи растворителя. При депарафинизации остаточного рафината автор предлагает использовать схему опыта [c.151]

    Повышение выхода депарафинированного масла, скорости фильтрования суспензии твердых углеводородов и получение парафинов с низким содержанием масла могут быть достигнуты при применении растворителя переменного состава, а именно, с повы- [c.152]

    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]

    Однако несмотря на высокую эффективность н-алканов при-обезмасливании петролатумов высокая стоимость делает их применение на промышленных установках маловероятным. В связи с этим в качестве модификаторов структуры твердых углеводородов при обезмасливании петролатумов были исследованы фракции, выделенные из мягкого и твердого парафинов холодным фракционированием и комплексообразованием с карбамидом, которые, по данным газо-жидкостной хроматографии и масс-спектрометрического анализа, содержали 35—40% (масс.) н-алканов С20— 2 Применение таких фракций в процессе обезмасливания петролатума показало (рис. 72), что скорость фильтрования суспензии петролатума увеличивается при более высоких их концентрациях, чем при введении индивидуальных н-алканов. Полученные при этом церезины характеризуются более высокой температурой плавления (рис. 73) и меньшим содержанием масла. [c.185]

Рис. 72. Зависимость скорости фильтрования суспензий твердых углеводородов при обезмасливании петролатума в присутствии узких фракций парафина с различным содержанием н-алканов С20—С24 Рис. 72. Зависимость <a href="/info/152309">скорости фильтрования суспензий</a> <a href="/info/397617">твердых углеводородов</a> при <a href="/info/397696">обезмасливании петролатума</a> в присутствии <a href="/info/34021">узких фракций</a> парафина с <a href="/info/201414">различным содержанием</a> н-алканов С20—С24
    При работе с суспензиями с баллом фильтруемости 5 (как правило, эти суспензии содержат >25% твердой фазы, имеют незначительную вязкость жидкой фазы и размер частиц твердой фазы до 0,1 мм) целесообразно их предварительное сгущение методом отстаивания с последующим фильтрованием на различных вакуум-фильтрах. Для суспензий с фильтруемостью 4 и 3 балла (обычно они содержат 1—25% твердой фазы с размерами частиц <0,01 мм) можно использовать фильтры, работающие под вакуу-мом без предварительного сгущения. Однако для суспензий с баллом фильтруемости 3 удельная производительность вакуум-фильтров резко падает, и более рационально использование фильтров, работающих под давлением. Для всех трех групп суспензий могут быть применены как фильтры непрерывного действия, так и периодического. Конкурентноспособным оборудованием для разделения суспензий с баллом 4 являются центрифуги. Для фильтрования суспензий с баллом фильтруемости 2 (характерная особенность — низкая концентрация твердой фазы — до 5% при размерах частиц 5 — 10 мкм) можно рекомендовать фильтры периодического действия, так как скорость образования осадка при использовании.фильтров непрерывного действия мала для получения необходимой минимальной его толщины за сравнительно короткий период фильтрования. С целью повышения удельной производительности часто используют фильтры, работающие под давлением. [c.215]


    Работа фильтр-пресса (рис. 83) состоит из последовательных операций сборки и зажима комплекта плит и рам, фильтрования суспензии, промывки и отжима осадка, разборки и разгрузки фильтра. Следует отметить, что неравномерность осадка по толщине и неоднородность по структуре обусловливает необходимость повышенного удельного расхода промывной жидкости по сравнению с фильтрами с горизонтальной фильтрующей поверхностью. [c.225]

    Автоматические камерные фильтр-прессы с горизонтальными плитами (ФПАКМ) предназначены для фильтрования суспензий с содержанием твердой фазы от 5 до 600 г/л с частицами размером не более 3 мм при 5—80 С и условии, что суспензия может транспортироваться по трубам диаметром 25 мм. Высокое давление фильтрования (до 15 кгс/см ) позволяет успешно использовать фильтр для разделения суспензий, образующих сжимаемые осадки с высоким гидравлическим сопротивлением. [c.226]

    Интересные данные о концентрации кетона в растворителе, соответствующей критическим условиям смешиваемости, получены 1[28] при использовании метода [26]. При увеличении содержания кетона в смеси с ароматическим растворителем повышается ТЭД, образуются крупные разобщенные кристаллообразования твердых углеводородов, способствующие увеличению скорости фильтрования суспензии и улучшению промывки отфильтрованного осадка. В то же время в результате непрерывного снижения растворяющей способности растворителя при определенном содержании кетона из раствора начинает выделяться вторая масляная фаза, состоящая из наименее растворимых в данном растворителе компонентов. Начало выделения этой фазы свидетельствует о критической концентрации кетона в растворителе. Результаты исследования (рис. 49) показали, ЧТО при депарафинизации автолового рафината критическая концентрация МЭК в смеси с толуолом составляет 66% (об.), причем при повышении кратности разбавления рафината растворителем с 1 3,75 до 1 5 она возрастает до737о. [c.144]

    От кратности растворителя к сырью в большой мере зависит не только выход депарафинированного масла, но и содержание масла в гаче или петролатуме. При увеличении кратности разбавления сырья растворителем уменьшается концентрация масла во всем растворе и в той его части, которая остается в твердой фазе. Это приводит к увеличению четкости отделения твердых углеводородов от жидкой фазы и некоторому повышению выхода депарафинированного масла. Выбор оптимальной кратности растворителя к сырью зависит и от конечной температуры охлаждения раствора, которая определяется природой растворителя и требуемой температурой застывания депарафинированного масла, а в процессе обезмасливаиия — температурой плавления твердых углеводородов. Чем ниже температуры конечного охлаждения и фильтрования суспензии, тем выше вязкость среды и оптимальная кратность растворителя к сырью. [c.147]

    При депарафинизации остаточных рафинатов, содержащих больше смолистых веществ, образуется компактная кристаллическая структура, способная агрегироваться. В связи с этим для обеспечения высоких скоростей фильтрования суспензий необходимы меньшая скорость охлаждения по сравению с дистиллятным сырьем и отсутствие интенсивного перемешивания. Растворимость [c.148]

    Для получения масел с низкой температурой застывания применяется процесс 01—Ме [42, 50, 68, 69], в котором растворителем служит смесь дихлорэтана (50—70% масс.), выполняющего роль осадителя твердых углеводородов, и метиленхлорида (50— 30% масс.), являющегося растворителем жидкой фазы. Использование этого растворителя позволяет получать депарафинированные масла с температурой застывания, близкой к температурам конечного охлаждения и фильтрования. Одним из достоинств процесса 01—Ме является высокая скорость фильтрования суспензии твердых углеводородов, достигающая 200 кг/(м -ч) на полную поверхность фильтра. В работах [42, 70] показана возможность иопользования для депарафинизаци и рафинатов широкого фракционного состава смесей дихлорэтана с дихлорметаном и дихлорэтана с хлористым пропиленом. Эти растворители позволяют проводить процесс депарафинизации с ТЭД в пределах О—1 °С, причем в случае двухступенчатого фильтрования содержание масла в парафине не превышает 2% (масс.). Наряду с этим большим достоинством хлорорганических растворителей является возможность исключить из технологической схемы установки систему инертного газа, так как эти растворители негорючи и взрывобезопасны. Общим недостатком всех хлорорганических растворителей является термическая нестабильность при 130—140 °С с образованием коррозионно-агрессивных продуктов разложения. Для выделения твердых углеводородов из масляных фракций предло- [c.158]

    В первый период освоения процесса депарафинизации выделение твердых углеводородов из рафинатов проводили в одну ступень. На таких установках твердые углеводороды, являющиеся сложной смесью компонентов, различающихся по структуре молекул, но содержащих парафиновые цепи нормального или сла-боразветвленного строения, кристаллизовались совместно, образуя мелкие смешанные кристаллы, а при депарафинизации сырья широкого фракционного состава — эвтектические смеси. Такой способ кристаллизации приводил к образованию труднофильтруемых осадков, в результате чего выход масла и скорость отделения твердой фазы были недостаточно высоки, а повышенное содержание масла в гаче усложняло процесс получения парафинов. В связи с этим встал вопрос о раздельной кристаллизации высоко-и низкоплавких углеводородов, который был решен внедрением в промышленность двухступенчатой депарафинизации. Этот процесс позволил увеличить выход депарафинированного масла, значительно повысить скорость фильтрования суспензии и снизить содержание масла в гаче, так как твердые ароматические углеводороды, уменьшающие размер кристаллов парафиновых и нафтеновых углеводородов, концентрируются в низкоплавких компонентах, кристаллизующихся во второй ступени процесса. [c.159]

    В настоящее время в СССР и за рубежом разработаны и внедрены в производство разные варианты совмещенных схем получения масел, парафинов и церезинов, которые позволяют перерабатывать сырье разного фракционного состава [71—74]. При такой схеме увеличивается выход депарафинированного масла, повышается скорость фильтрования суспензий в результате раздельной кристаллизации твердых углеводородов, появляется возможность одновременно получать парафины с разной температурой плавления. На совмещенной четырехступенчатой установке одна ступень предусмотрена для депарафинизации дистиллятных рафинатов и три ступени для обезмасливаиия гача, причем третья ступень используется при производстве глубокообезмасленных парафинов [7, с. 130]. [c.159]

    На ряде зарубежных заводов для получения низкозастывающих масел осуществляется по новой технологии процесс 011сЬ1П [68, с. 153 87]. В этом процессе использован оригинальный метод кристаллизации парафина, заключающийся в прямом введении холодного растворителя в нагретое сырье при энергичном перемешивании в кристаллизаторе, снабженном перемешивающим устройством. Образующиеся сильно разрозненные и компактные агломераты кристаллов твердых углеводородов обеспечивают высокие скорость фильтрования и выход депарафинированного масла. Затем в скребковых кристаллизаторах температуру суспензии понижают до требуемой температуры фильтрования. Кристаллы парафина отделяются от м асла филы1ро.ванием в одну или более ступеней в зависимости от заданного содержания масла в парафине. Дополнительной обработки не требуется. Для предотвращения образования льда в оборудовании, работающем с холодным растворителем, применяется система осушения растворителя. Обычно в качестве растворителя используют смесь метилэтилкетона с метилизобутилкетоном или толуолом. По этой технологии можно депарафинировать сырье практически любой вязкости и получать масла с низкой температурой застывания при увеличении скорости фильтрования суспензии на 40—50% и уменьшении содержания масла в гаче до 2—15% (масс.) при одноступенчатом фильтровании. В случае двухступенчатого фильтрования получается парафин с содержанием масла менее 0,5% (масс.). [c.165]

    Была изучена [93] возможность интенсификации процесса депарафинизации остаточного рафината из смеси западно-сибирских нефтей в растворе МЭК — толуол (1 1) при помощи присадок разной химической природы (металлсодержащих, полимерных, карбамидсодержащих, диалкилдитиофосфатных с разным числом атомов углерода в углеводородном радикале). Наиболее эффективными с точки зрения улучшения основных показателей этого процесса оказались многофункциональные алкилфенольные металлсодержащие присадки АФК и В-167, а также карбамидсодержащая присадка В-526 (рис. 57). В отличие от аналогичных исследований этого процесса, описанных в литературе, авторами впервые было показано, что уже в области ранее не изучаемых малых концентраций вводимых присадок (0,02—0,04% масс, на рафинат), особенно в случае присадки АФК, заметно уменьшается длительность фильтрования суспензий твердых углеводородов при одновременном увеличении выхода депарафинированного масла. [c.167]

    Для модификации кристаллов твердых углеводородов в процессе депарафинизации рекомендуется применять одновременно смесь двух ускорителей (присадок), дающих синергический эффект [95]. Многочисленные патенты предлагают различные по химической природе синтетические присадки как ускорители фильтрования. Так, в ФРГ проведена депарафинизация остаточного нефтяного сырья с использованием таких ускорителей , как депрессоры — хлуксаны Е, S, N [96]. Значительно увеличивается скорость фильтрования суспензий в присутствии сополимера бутадиена и стирола [97] депрессорной присадки на основе алкенилсукцинимндов i[98] продуктов реакции сополимера ангидрида двухосновной ненасыщенной кислоты с циклическим диолефином с несопряженными связями 1[99]. Это далеко не пол- [c.169]

    В настоящее время на большинстве нефтеперерабатывающих заводов производство масел и парафинов (церезинов) осуществляется на совмещенных установках депарафинизации и обезмасли-вания, причем обезмасливание петролатумов протекает при меньших скоростях фильтрования и с меньшей четкостью отделения твердой фазы от жидкой, чем обезмасливание гача. Это связано с тем, что высокомолекулярные углеводороды, входящие в состав петролатума, содержат в молекулах наряду с длинными парафиновыми цепями нафтеновые и ароматические кольца. Такие углеводороды обладают резко выраженной склонностью к образованию мелкодисперсных структур в условиях процесса обезмас-ливания, что снижает скорость фильтрования суспензий твердых углеводородов и производительность установки по сырью. Кроме того, повышенное содержание масла в церезине ограничивает области его применения. В связи с этим на многих заводах церезины не вырабатывают, а петролатум используют как компонент мазута. [c.176]

    Однако потребность в глубокообезмасленных высокоплавких церезинах из года в год растет. В связи с этим исследованию возможности интенсифицировать процесс обезмасливаиия твердых углеводородов, особенно петролатумов, посвящено много работ. Известно, что некоторые примеси и специально введенные присадки могут изменять течение и характер кристаллизации твердых углеводородов при понижении температуры, влияя как на образование центров кристаллизации, так и на последующий рост кристаллов. Использование модификаторов структуры твердых углеводородов для интенсификаций обезмасливаиия представляет большой интерес. В этом случае без особых капитальных затрат можно значительно увеличить скорость фильтрования суспензии твердых углеводородов и, как следствие этого, увеличить производительность установки при одновременном повышении качества получаемых церезинов. Эффективность модификаторов структуры твердых углеводородов при обезмасливании зависит от их правильного выбора, который определяется природой и механизмом действия модификатора, составом и содержанием твердых углеводородов в сырье, а также структурой и содержанием в нем смолистых веществ. [c.176]

    Рассматривая зависимость скорости фильтрования суспензии петролатума от содержания присадки АФК, можно выделить две области, в пределах которых резко возрастает скорость фильтрования. В этих же областях наблюдается значительное изменение качества получаемых церезинов это область малых концентраций присадки (0,005—0,05% масс.) и область высоких концентраций (1—2% масс.). Больший интерес представляет область малых концентраций с точки зрения как экономики, так и протекания самого процесса обезмасливаиия. Скорость фильтрования суспензии петролатума в области малых концентраций в 1,8 раза выше, а содержание масла в церезине в 2 раза ниже, чем в области высоких концентраций, при одновременном повышении температуры плавления церезинов на 1 —1,5°С. При обезмасливании мангышлакского петролатума, который отличается от петролатума, получаемого при переработке западно-сибирских нефтей, более высоким содержанием парафино-нафтеновых углеводородов и меньшим содержанием смол, для достижения максимальной скорости фильтрования (рис. 64) необходима более высокая концентрация М 0дификат01ра структуры твердых углеводородов. [c.177]

    Такая ориентация ПАВ обусловлена как ван-дер-ваальсовыми силами притяжения между углеводородными цепями, так и сила ми взаимного отталкивания их полярных групп при высоких концентрациях присадки в системе. Пока мицеллы имеют небольшие размеры, они преимущественно концентрируются в фильтрате обезмасливаиия. При этом церезин обедняется присадкой, что ведет к возрастанию его р и а. Для фильтрата аналогичные показатели снижаются, особенно р , что говорит о высокой концентрации присадки в этом продукте. В этой области скорость фильтрования суспензий петролатумов снижается до уровня скорости фильтрования без присадки. При введении более 0,1% (масс.) присадки наряду со сферическими мицеллами образуются более крупные пластинчатые мицеллы ПАВ, и присадка обнаруживается как в твердой, так и в жидкой фазе. Возможно также взаимодействие части мицелл между собой с образованием крупных агрегатов, благодаря чему скорость фильтрования увеличивается, но уже не достигает максимума. Аналогичные результаты получены при использовании присадок АзНИИ и ПМА Д в качестве модификаторов структуры кристаллов твердых углеводородов. Следовательно, присадки этого типа обладают адсорбционным механизмом действия при кристаллизации твердых углеводородов в процессе обезмасливаиия. [c.181]

Рис. 69. Зависимость скорости фильтрования суспензий твердых углеводородов при обезмасливании петролатумов от содержания н-алкана С20Н42 Рис. 69. Зависимость <a href="/info/152309">скорости фильтрования суспензий</a> <a href="/info/397617">твердых углеводородов</a> при <a href="/info/397696">обезмасливании петролатумов</a> от содержания н-алкана С20Н42
    Большое внимание уделяют комбинированным аииаратам многофункционального назначения в производстве химических реактивов и особо чистых химических вептеств. Так как обработка проводится в одном аппарате, гарантируется высокая чистота производимого продукта. Разработаны комбинированные технологические аппараты, в которых совмещены процессы фильтрования суспензии и сушки осадка. Одна из конструкций предназначена для кристаллических продуктов, в основном, солей (нитратов, хлоридов, сульфатов и др.) с кристаллами размером более 60 мкм, другая — для высокодисперсных продуктов— оксидов, гидроксидов, карбонатов и других — с размерами частиц менее 60 мкм. Аппараты обоих типов прошли испы- [c.26]

    Важной характеристикой осадка, получающегося при фильтровании суспензии, является порозность е [32], т. е. отнощение объема каналов между зернами Икан (или Усв), занятого в момент фильтрования жидкостью, к общему объему осадка Уос [c.103]

    Если сопротивлением фильтровальной перегородки можно пренебречь (/ ф п = 0), то производится обычное фильтрование суспензии с отложением на фплыре слоя осадка при постоянной разности давлений затем при той же разности давлений через образованный слой высотой пропускается чистый фильтрат. Во время опыта замеряются У, Т , г и вычисляется Г нз уравнения  [c.500]


Смотреть страницы где упоминается термин Фильтрование суспензий: [c.266]    [c.274]    [c.138]    [c.148]    [c.153]    [c.157]    [c.163]    [c.164]    [c.166]    [c.168]    [c.172]    [c.182]    [c.183]    [c.184]    [c.185]    [c.478]    [c.224]    [c.224]   
Смотреть главы в:

Физико-химические основы неорганической технологии -> Фильтрование суспензий

Процессы и аппараты химической технологии Часть 1 -> Фильтрование суспензий

Основные процессы технологии минеральных удобрений -> Фильтрование суспензий

Процессы и аппараты химической технологии Часть 1 -> Фильтрование суспензий


Процессы и аппараты химической технологии Часть 1 (2002) -- [ c.231 ]

Химико-технические методы исследования Том 1 (0) -- [ c.96 ]

Основные процессы технологии минеральных удобрений (1990) -- [ c.112 ]




ПОИСК





Смотрите так же термины и статьи:

Суспензии

Фильтрование



© 2025 chem21.info Реклама на сайте