Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Борил-катион

    Хлорирование и бромирование ведут в присутствии катализаторов — треххлористого железа, треххлористого алюминия, трехфтористого бора и др. Хлорирование бензола протекает по ионному механизму и относится к числу реакций электрофильного замещения в бензольном ядре. Катализатор способствует образованию хлор-катиона, который и является хлорирующим агентом  [c.66]


    Полимеризация изобутилена в присутствии фтористого бора протекает по катионному механизму с очень высокой скоростью при низких температурах (около —100 °С). Для регулирования скорости, процесса полимеризацию проводят в среде растворителя (жидкие этилен, этан, пропан, бутан). Оптимальная концентрация мономера в растворе равна 15-30%. [c.13]

    Таким образом, электронная теория Льюиса рассматривает нейтрализацию в водных растворах, взаимодействие аммиака с галогенидами бора, комплексообразование, реакции ангидридов с водой как сходные процессы. Действительно, согласно теории химической связи, во всех этих процессах взаимодействие между частицами имеет одинаковую природу — образуется донорно-акцепторная связь. Вещества, являющиеся донорами электрон] ых пар, часто называют основаниями Льюиса, а акцепторы электронных пар — кислотами Льюиса или L-кислотами. Большинство катионов является L-кислотами, а анионов — льюисовскими основаниями. Соли — типичные кислотно-основные комплексы. Мы видим, что теория Льюиса рассматривает вопрос о кислотах и основаниях более широко, чем другие теории. [c.241]

    Указания на то, что и катион играет важную роль, по крайней мере в некоторых случаях, заключаются в том, что когда из алюмогидрида лития эффективно удаляли Ы+ (добавлением краун-эфира), реакция не происходила [252]. Для получения спирта комплекс 21 необходимо гидролизовать. В случае боргидрида натрия Ыа+, ио-видимому, не участвует в переходном состоянии, но кинетические данные свидетельствуют о том, что группа 0R растворителя участвует и остается связанной с бором [253]  [c.359]

    Инициаторами катионной полимеризации являются серная кислота, трехфтористый бор, хлористый алюминий, четыреххлористый титан, хлорное олово и др. [c.199]

    В относительно простых производных атомы бора и азота имитируют структуру атома углерода за счет образования соответственно анионных и катионных комплексов, изоэлектронных соответствующим соединениям углерода. Например  [c.450]

    Алюминий — типичный амфотерный элемент. В отличие от бора для него типичны не только анионные, но и катионные комплексы. В большинстве соединений атомы алюминия находятся в состоянии и реже 5р -гибридизации. Отсюда для алюминия наиболее характерны координационные числа 6 и 4. [c.524]

    Из диазометана под действием соединений бора получаются строго линейные полиметилены, близкие по свойствам к полиэтилену низкого давления для этой реакции принят катионный механизм  [c.937]

    Катионы, имеющие структуру о-комплекса, образуются при смешивании эквимольных количеств ароматического соединения, хлорида алюминия и хлороводорода или ароматического соединения, трифторида бора и фтороводорода. Получающиеся вещества окрашены, их растворы хорошо проводят электрический ток, при электролизе выделяют на катоде органические молекулы, плохо растворяются в органических растворителях, обладают достаточной устойчивостью и разлагаются только при нагревании. [c.319]


    Таким образом, алюминий и последующие р-элемен-ты 3 группы в соединениях выступают в виде катионов Э +. Они же, а также бор, входят в состав анионов ЭОз , ЭОа . Оксид таллия ТЬОз и соответствующий ему гидроксид Т1(0Н)з имеют основные свойства. Для таллия характерно образование соединений, в которых степень его окисления -1-1. Металлический характер таллия в них выражен наиболее ярко. [c.74]

    Гомогенно-каталитические реакции особенно распространены при проведении процессов в жидкой фазе. К таким процессам относятся ускоряющиеся под действием водородных ионов реакции этерификации и гидролиза сложных эфиров, инверсии сахаров, мутаротации глюкозы, а также катализируемый некоторыми анионами и катионами распад перекиси водорода в водных растворах. Кроме того, гомогенно-каталитическими являются реакции полимеризации олефинов в жидкой фазе под действием серной кислоты, полимеризация олефинов в жидкой и паровой фазах в присутствии трехфторнстого бора или фтористого водорода и многие другие. [c.276]

    Большой интерес представляют результаты, полученные И. В. Радченко и А. И. Рысс при исследовании водных растворов Н(Вр4), NH4(BF4), Ы(Вр4), Na(Bp4), Mg(Bp4)2 и Ni(Bp4)2. Особенностью указанных растворов является наличие общего аниона ВР 4 с тетраэдрическим расположением атомов фтора вокруг атома бора. Концентрация ионов ВР"4 во всех растворах была почти одинаковой, что позволило более однозначно судить о том, как меняется собственная структура воды под действием различных катионов. [c.291]

    По окрашиванию пламени (см. гл. 1, пункт 1.2, табл. 1.2) судят о присутствии того или иного катиона в анализируемом образце. Желтое окрашивание пламени указывает на присутствие катионов натрия, фиолетовое — калия, кирпично-красное — кальция, карминово-красное — лития, стронция, зелено-желтое — бария, зеленое — бора, меди или висмута, бледно-синее — свинца, олова, мышьяка, сурьмы. [c.503]

    У бериллия (ls 2s ) по сравнению с бором ( s 2s 2p ) в соответствии с увеличением радиуса атома и уменьшением числа валентных электронов неметаллические признаки проявляются слабее, а металлические усиливаются. Бериллий обладает более высокими энергиями ионизации атома (II = 9,32 эВ, /а == 18,21 эВ), чем остальные s-элементы II группы. В то же время он во многом сходен с алюминием (диагональное сходство в периодической системе) и является типичным амфотерным эле.ментом в обычных условиях он простых ионов не образует для него характерны комплексные ионы как катионного, так и анионного типа. Во всех устойчивых соединениях степень окисления бериллия -f2. Для Ве (II) наиболее характерно координационное число 4 (зр -гибри-Д1(зация валентных орбиталей). [c.470]

    Как видно из табл. 5, энергия ионизации для элементов одного периода увеличивается слева направо с ростом заряда ядра. Она возрастает также с числом отрываемых электронов образующийся катион имеет положительный заряд н с большей силой притягивает оставшиеся электроны (см. /г, табл. 5). Из таблицы видно, что величина энергии ионизации связана с энергетическим состоянием электрона. Например, у бора и алюминия она ниже, чем у бериллия и магния, так как отрываются 2р-электроны, которые менее прочно связаны с ядром, чем 2з-электроны. [c.58]

    Хорошо известно, что наряду с заместителями, непосредственно связанными с карбониевым центром (а-заместители), в стабилизации последнего могут участвовать также более удаленные атомы и группы, например -заместители . В ряде случаев этот эффект настолько велик, что наблюдается резкое уменьшение электронной плотности на соседних атомах вплоть до полного выравнивания ее в карбониевом центре и на С.,-атоме (норборнил-катион (29) [34]). Такой кардинальной модификацией карбониевого центра объясняют очень малую скорость вырожденной перегруппировки норборнил-катиона путем 1,2-сдвига атома водорода от Сз к Сг по сравнению со срсоростями 1,2-Н-сдвигов во вторичных ионах карбония алифатического ряда [33, 34] соотношение констант скоростей 1,2-Н-сдвига от Сз Сз в нор-бориил-катионе и в циклопентил-катионе достигает 10 при —150° [34]. [c.200]

    Чрезвычайно интересный новый тип комплексных соединений, полученных с галоидангидридами диарилборных кислот, исследовали недавно Михайлов и сотр. [20а, 21а]. Авторы показали, что для соединений бора характерно не только образование нейтральных и анионных комплексов, но и образование катионных комплексов. Эти так называемые борониевые соли, содержащие сложный бор-катион, получены при действии аммиака или первичных аминов на дифенил-, а также ди-л-толилборхлорид  [c.209]

    Альжиний — типичный амфотерный элемент, в отличие от бора для него Т1ШИЧНЫ не только анионные, но и катионные комплексы. [c.451]

    У алюминия по сравнению с бором атомный радиус больше, а потенциалы ионизации меньше, следовательно, возрастают металлические свойства. В отличие от неметалла бора алюминий является амфотерным элементом в широком смысле слова. Так, металлический алюминий и его гидроксид растворяются и в кислотах, и в щелочах, а А1(+3) образует и комплексные катионы, и ацидокомилек-сы. Алюминий по праву можно считать родоначальником как элементов подгруппы галлия, так и элементов подгруппы скандия. Это видно из рис. 23, на котором показан характер изменения энтальпий образования оксидов и галогенидов алюминия и элементов подгрупп галлия и скандия. [c.147]


    Шнайдер и Кеннеди [44] сообщают, что .. . было найдено, что 2,3-димв1 ил-бутан не вступает в реакцию с изобутаиом в присутствии трет-бутилфторида и фтористого бора. Они объясняют это наблюдение тем, что изомеризация иона, образовавшегося присоединением т эет-бутил-катиона к 2,3-диметилбутену-2, не вносит изменений в скелете. Однако их экспериментальные данные показывают, что хотя 2,3-диметилбутан менее реакциониоспособен, чем 2-метилпентан, он характеризуется такой же реакционной способностью, как и 2,4-диметилпентан. [c.318]

    Пониманию механизма катионной полимеризации особенно способствовало наблюдение (Эванс и Поляни), что помимо фтористого бора необходим еще и сокатализатор (например, НгСО.в отсутствие которого при наивысшей чистоте исходных материалов и аппаратуры полимеризация не идет. Сокатализатор образует с ВРз комплексное соединение, катион которого ииициирует полимеризацию. [c.936]

    I %) комплекса трехфтористого бора и диэтилового эфира мгновенно начинается бурная экзотермическая реакция, пpeд тaвлякi-щая собой своеобразный процесс поликонденсации. Комплекс, получаемый сочетанием диэтилового эфира с ВР , обычно является катализатором катионной полимеризации. Возможно, что в данном случае происходит своеобразная катионная поликонденсация. Своеобразие ее заключается в том, что при каждом акте катионного инициирования и роста происходит отщепление молекулы азота от диазометана. [c.197]

    Однако образование комплекса катализатор - сокатализатор возможно для трехфтористого бора, но маловероятно в случае применения боралкилов или эфиров борной кислоты. Спирты не являются сокатализаторами этой реакции и, кроме того, катион типа СНдМ./ + будет терять азот вследствие неустойчивости и тогда рост цепи должен протекать через ион карбония. [c.198]

    Процесс полимеризации простых виниловых эфиров, как и полимеризация ненасыщенных ацеталей, протекает по катионному механизму под влиянием катализаторов Фриделя—Крафтса, образующих комплексы с водой, эфиром или спиртом, обычно присутствующими в системе. Наиболее интенсивно процесс идет в присутствии трехфтористого бора. Полимеризация сопровождается бурным выделением тепла, что часто вызывает потемнение и даже обугливание продукта. При большом количестве катализатора и повышенной температуре реакции получаются сравнительно низкомолекулярные пластичные или вязкие полимеры. Поэтому рекомендуется проводить полимеризацию в присутствии небольших количеств катализатора (доли процента) и при температуре —40 и ниже. [c.295]

    При изменении состава стекла в сторону увеличения стеклооб-разователя возникает разветвленная структура в виде сетки, имеющей тем больше разветвлений, чем меньше отношение числа атомов кислорода к числу атомов кремния (фосфора, бора). Многокомпонентные стекла рассматриваются как аналоги органических полимеров, в которых роль низкотемпературного растворителя играют ионы щелочных металлов. За счет более жестких связей образована сетка стеклообразователи, более слабыми связями присоединены к сетке катионы металлов. [c.199]

    Для бора не характерны соедин( иня, в которых он входит в состав катионов, но весь.ма гиппчиы такие анионы, как ВОГи ВО Все эти примеры показывает что бор — неметалл, а алюминий — мета.ил. [c.136]

    Стеклянный электрод относится к большой группе ионселективных электродов, т. е. электродов, чувствительных к определенному иону. В кислой и нейтральной средах стеклянный электрод обладает высокой селективностью к ионам водорода, а в щелочной становится селективным к катионам щелочного металла. Введение в состав стекла оксидов бария, церия, лантана и замена натрия на литий значительно расширяют диапазон Н+-функции стеклянного электрода и позволяют создать стеклянные электроды, работающие в диапазоне pH от 2 до 14 при температуре, не превышающей 100—150°С. С другой стороны, введение в состав стекла оксидов алюминия и бора в сильной степени увеличивает его катионную функцию. Таким путем удалось создать набор катиончувст-156 [c.156]

    В отличие от ионных соединений остальных элементов 111 группы и элементов подг пп 1А и 11А, соли, диссоциирующие в растворах с образованием катиона В, неизвестны. Для бора типичны соединения, в которых он входит в состав комплексного аниона ((В02)Ц . В О , ВК . ВК и др.]. [c.344]

    Двойственную роль в силикатах могут играть и такие катионы, как бор, бериллий, титан, цирконий. Они также могут замещать кремний в кремнекислородных мотивах, образуя боро-, берилло-, титано-, цирконосиликаты или силикаты бора, бериллия, титана, циркония. [c.30]

    Бораыы, карбораны и металлокарбораны. Бораны, ил и бороводороды, образуют широкий ряд полиэдрических форм, характеризующихся наличием в них треугольных граней (дельтаэдры). Примерами таких структур являются пентаборан В5Н9, обладающий пирамидальной конфигурацией скелетных связей В В XIV и изоэлектронный катиону (СН , пирамидальный карборан XV, [c.361]

    Следует заметить, что для образования связей и проявления степени окисления +3 необходимо участие спаренных электронов, занимающих -орбиталь в атомах этих элементов. Пара электронов 5 устойчива и принимает участие в образовании химических связей лишь у элементов, образующих прочные связи например, у алюминия валентность +3 является преобладающей. Устойчивость одновалентных состояний растет в подгруппе по мере снижения прочности связей, и у таллия известны многочисленные соединения, в которых он одновалентен. Напротив, бор в соединениях всегда трехвалентен образование ковалентных связей в общем случае может доставить энергию, необходимую для того, чтобы перевести электроны атома бора в реакционноспособное возбужденное состояние, отвечающее 5р -гибридизации. Ионизационный потенциал (первый) бора настолько высок (8,29 эВ), что образование одной связи с одновалентным катионом бора не может компенсировать затраты энергии на отрыв электрона. Направление осей гибридных облаков этого типа характеризуется углами 120°, причем все три оси лежат в одной плоскости. Поэтому молекула соединения бора типа ВС1з имеет плоскую структуру. Бор в гидридах формально ведет себя как четырехвалентный элемент. Боран ВНз в свободном состоянии неизвестен и обнаружен только как неустойчивый промежуточный продукт. Но диборан ВгНв исследован детально. Этот гидрид был использован для получения и ряда других боранов. Диборан получают в чистом виде из борогидрида натрия и три-фторида бора  [c.157]

    Катионная полимеризация. Катионная полимеризация протекает в присутствии сильных кислот или таких катализаторов, как фтористый бор ВРд, бромистый алюминий А1Вгд, хлористый алюминий А1С1з и т. п. Катализаторы этого типа — сильные акцепторы электронов Активные центры при катионной полимеризации появляются в результате возникновения положительного заряда у одного из углеродных атомов молекулы мономера. Прн этом образуется карбкатион (ион карбония). Например, полимеризация изобутилена в присутствии фтористого бора и прн участии (в качестве сокатали-затора) воды протекает следующим образом. Фтористый бор образует с водой комплексное соединение [c.450]

    Будучи элементом 2-го периода Системы, кислород — кайносимметрик и лежит недалеко от конца строки, т. е. атомы его обладают значительным сродством к электрону и могут быть названы окислителями, анионогенами и ацидогенами (захватывают электроны от водородного атома, позволяя ему выделяться в виде катиона Н+), а также имитаторами неона. Диапазон изменения ядерных зарядов в ряду атомов 2-го периода невелик (от 2 = 3 до 2 = 10), но относительное изменение от Не до Ые очень велико — рост в 5 раз, а потому переход свойств весьма заметен бор уже теряет металлические свойства. Это отличает 2-й период от 3-го, где алюминий еще металл, а 2 от Ме до Аг меняется всего в 1,8 раза. [c.186]

    Подобно бору, трехвалентный азот также характеризуется координационным числом, равным четырем. Однако обрауземые обоими элементами комплексы при одинаковости структурного тина нмеют разный электрохимический характер бор образует анионы [BF4] , а азот — катионы [NH4]+. Так как у промежуточного между ними элемента — углерода — координационное число совпадает с валентностью, его соответствующие производные электронейтральны и представляют собой переходные случаи, что видно из приводимого сопоставления NaJBE4] — F4 —СН4— [NH4]F. [c.350]


Смотреть страницы где упоминается термин Борил-катион: [c.329]    [c.11]    [c.38]    [c.90]    [c.397]    [c.26]    [c.38]    [c.37]    [c.339]    [c.138]    [c.71]    [c.26]    [c.481]    [c.214]   
Неорганическая химия (1989) -- [ c.141 ]




ПОИСК





Смотрите так же термины и статьи:

Катионные комплексы бора

Катионные комплексы бора анализ

Катионные комплексы бора гидролиз и алкоголиз

Катионные комплексы бора окисление

Катионные комплексы бора пиролиз

Катионные комплексы бора получение

Катионные комплексы бора реакции в анионе и катионе

Катионные комплексы бора строение

Катионные комплексы бора физические свойства

Катионные комплексы бора химические свойства



© 2025 chem21.info Реклама на сайте