Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы Фриделя Крафтса

    Полагают, что алкилирование ароматических углеводородов олефинами, спиртами, простыми и сложными эфирами и третичными алкил-галогенидами в большинстве случаев проходит по механизму карбоний-иона как с кислотами, так и с катализаторами Фриделя — Крафтса. [c.134]

    Основными катализаторами являются катализатор Фриделя—Крафтса, сульфид вольфрама, бифункциональные, цеолитсодержащие с благородными металлами и комплексные. Наиболее распространены в настоящее время бифункциональные катализаторы, содержащие платину или палладий на кислотном носителе (оксид алюминия, цеолит). [c.44]


    При алкилировании бензола олефинами в присутствии катализаторов Фриделя Крафтса происходит поляризация двойной связи, подтверждающаяся многими фактами, в частности превращениями г ис-изомеров в более устойчивые транс-конфигурации. [c.97]

    При помощи катализаторов Фридель—Крафтса правильные карбоний-ионы обычно образуются присоединением протона к оле-фину ири условии, что катализатор активирован.  [c.108]

    Интересную возможность непрямого получения хлоруглеводородов представляет реакция присоединения к олефинам хлористых алкилов, содержащих атом хлора при вторичном или третичном углероде, в присутствии катализаторов Фриделя — Крафтса. [c.196]

    Неослабевающий интерес исследователей к изучению структуры и состава комплексов ароматических соединений с катализаторами Фриделя — Крафтса объясняется тем, что выяснение этого вопроса в значительной степени облегчает познание закономерностей электрофильного замещения. Еще в ранних работах на основании изменения в ультрафиолетовых спектрах поглощения было установлено, что ароматические углеводороды при взаимодействии с СЬ, Вгг и Ь образуют комплексы, проявляя при этом основные свойства. Кроме того, было показано, что при растворении НС1 в ароматических углеводородах получаются комплексы состава 1 1, не вызывающие заметных изменений в спектрах поглощения, а в экспериментах с D I обмена с водородными атомами ароматических ядер не происходило. Ароматические углеводороды при взаимодействии с сильными кислотами Льюиса проявляют себя как основания, образуя двойные (ArR—МХ ) и тройные (ArR— MX —НХ) комплексы. [c.79]

    Ионы карбония образуются в реакциях, катализируемых так называемыми кислотными катализаторами, к которым относятся протонные кислоты (например, серная, фосфорная и фтористо-водородная) галогениды типа катализаторов Фриделя-Крафтса (например, хлористый алюминий, хлористый цирконий и фтористый бор) и окиси (нанример, алюмосиликаты). Ионы карбония, образующиеся в реакционных условиях прежде чем превратиться в конечные продукты могут претерпевать одно или несколько изменений в соответствии со следующими правилами  [c.213]

    Имеются, однако, методы, позволяющие повышать растворимость угля путем его обработки при более низких температурах. Это, например, реакции, идущие под действием катализаторов Фриделя — Крафтса. В качестве таких катализаторов использовали трифторид бора и фенол [I], и-толуолсульфокислоту и толуол 12] сообщается также ([3] о взаимодействии битуминозных углей с пропилхлоридом в сероуглероде при 45 °С в присутствии хлористого алюминия в качестве катализатора. Несколько иной подход был использован в работе [4], где битуминозный уголь подвергали восстановительному алкилированию под действием натрия и алкилгалогенидов. [c.301]


    Эти результаты, полученные с хлористым галлием и галоидными солями алюминия, указывают на легкое образование сравнительно стойких продуктов присоединения галоидных алкилов к катализатору Фриделя-Крафтса 1 1. Эти продукты присоединения, по-видимому, существуют первоначально в неионизированной форме и ионизируются только очень медленно, если вообще ионизируются. Отсюда следует, что реакция Фриделя—Крафтса с галоидалкилами, вероятно, включает образование этих продуктов присоединения, причем ионизация возможная, но отнюдь не необходимая вторая стадия (ЬХХУ)  [c.434]

    Наибольшее применение для улучшения вязкостно-температурных свойств масел находит полиизобутилен, который получают методом катионной полимеризации изобутилена в присутствии катализаторов Фриделя — Крафтса и Циглера — Натта  [c.140]

    Полиизобутилены являются высокомолекулярными соединениями, которые получаются низкотемпературной полимеризацией изобутилена под действием катализаторов Фриделя — Крафтса. [c.328]

    Метил- и этилхлориды не удается ввести в реакцию конденсации с олефинами в присутствии катализаторов Фриделя — Крафтса. Конденсация более высокомолекулярных первичных галоидалкилов идет через промежуточную стадию изомеризации их во вторичные или третичные галоидалкилы (или соответствующие ионы). Так, например, реакция н-про-пилхлорида с этиленом дает 1-хлор-3,3-диметилпентан (II) изомеризация н-пропилхлорида в изопропилхлорид, несомненно,, предшествует конденсации его с олефином [13]. Подобным же образом реакция изобутилхлорида с этиленом, в результате которой образуется 1-хлор-3,3-диметилбутан [13], включает изомеризацию изобутилкатиона в трет-бутилкатион. Конденсация неопентилхлорида с этиленом происходит с изомеризацией неопентильной группы в трет-пентильную основным продуктом реакции является 1-хлор-3,3-диметилпентан (II) [17]. [c.229]

    На практике никогда нельзя полностью исключить присутствие воды или другого донора протонов, и свойства льюисовских кислот на самом деле могут оказаться свойствами сопряженных бренстедовских кислот ниже мы покажем, что катализаторы Фриделя — Крафтса нуждаются в таких сокатализаторах. [c.47]

    Использование органических растворителей с катализаторами Фриделя — Крафтса лимитируется низкой растворимостью (в неполярных [c.47]

    Данные авторов [1] по алкилированию углей в присутствии катализаторов Фриделя— Крафтса показывают, что растворимость битуминозных углей повышается не только из-за их деполимеризации, но и за счет введения в ароматические молекулы заместителей с длинной цепью их наличие увеличивает расстояние между ароматическими структурами смежных молекул и снижает силы физического притяжения. Авторы попытались использовать алкилирование как метод повышения растворимости углей. Не исключено, что в будущем окажется возможным создать экономичный процесс ожижения угля в относительно мягких условиях путем его обработки минеральным маслом. [c.302]

    Чем объясняется увеличение растворимости углей, подвергнутых алкилированию Ранее авторы этой статьи показали, что под действием катализаторов Фриделя — Крафтса протекают реакции крекинга и конденсации молекул угля. В соответствии с сегодняшними представлениями, битуминозные угли представляют собой смесь высокомолекулярных соединений, молекулы которых состоят из ароматических фрагментов, связанных алифатическими или эфирными мостиками  [c.306]

    Алкилирование угля под действием катализаторов Фриделя — Крафтса промотирует образование растворимых продуктов. В настоящее время этот метод не является экономически целесообразным, однако полученная информация проясняет некоторые положения, Экстракты, выделенные из угля в результате его алкилирования по описанной методике, представляют собой черные блестящие твердые вещества, которые не перегоняются и, вероятно, все еще имеют высокую молекулярную массу. По свойствам они близки к экстрактам, полученным прн ацилировании тех же углей хлор-ангидридами карбоновых кислот в присутствии хлористого алюминия. [c.307]

    В случае каталитической деполимеризации под действием катализаторов Фриделя — Крафтса, использованных, по-видимому,, впервые в работе [5], растворимость угля существенно увеличивается при обработке его трифторидом бора в феноле при 100°С. Несколько позже было обнаружено [6], что более эффективным катализатором деполимеризации при 185°С является раствор п-толуолсульфокислоты в феноле. Было также найдено [7], что менее обуглероженные угли отличаются повышенной активностью и способностью растворяться. [c.325]

    Промышленные процессы изомеризации осуществляются в зависимости от типа катализатора при температурах О—480°С, давлении 1,4—10,5 МПа, объемной скорости подачи сырья 1—6 ч . В качестве катализаторов изомеризации применяют катализаторы Фриделя — Крафтса, бифункциональные и цеолитсодержащие катализаторы с благородными и редкими металлами (р , Р(1, КН, 1г и др.), а также комплексные катализаторы — сочетания последних с катализаторами Фриделя — Крафтса. Изомеризацию с использованием катализаторов Фриделя—Крафтса (на основе брома) можно осуществлять при 2 МПа и 40—120°С и даже при 24—50°С. В присутствии таких катализаторов, как хлористый алюминий с промоторами, изомеризацию парафинов можно осуществлять при температурах ниже комнатной. Последние исследования показали, что изомеризация парафиновых углеводородов в присутствии хлористого алюминия значительно ускоряется при наличии в реакционной смеси следов олефина. [c.314]


    Это отщепление является реакцией, обратной алкилированию ароматических углеводородов олефинами. Последняя — хорошо и шестная низкотемпературная реакция над кислыми катализаторами, интерес к которой в последнее время вновь возрос в связи с ее механизмом, особенно над катализаторами Фриделя-Крафтса [6]. Действительно, общая теория замещенпя ароматических углеводородов в кислой среде связана с механизмом каталитического крекинга ароматических углеводородов. [c.129]

    Изомеризация. Хорошо разработанный процесс представляет сОбой каталитическая изомеризация пентана. Точно так же в промышленном масштабе нашла себе применение и изомеризация гексана. Однако с точки зрения производства моторного топлива изомеризация этих углеводородов в процессе каталитического риформинга имеет небольшое значение. Это объясняется тем, что в большинстве случаев октановые числа фракций С 5—С в достаточно высоки и нет необходимости прибегать к каталитическому риформингу этих фракций. Кроме того, они не нуждаются в рифор-мииге ввиду достаточно хорошей приемистости к тетраэтилсвинцу. Однако образование ароматических углеводородов и особенно бензола из фракции С6 требует изомеризации парафиновых углеводородов этой фракции. Объектом глубокого изучения является изомеризация парафинов фракции С,. Эти исследования еще не привели к созданию промышленного процесса, хотя теоретически реакция представляет интерес для повышения октанового числа парафиновых углеводородов фракции С 7. Главное до-стоилство этой операции заключается в получении исключительно больших теоретических выходов высокооктановых изомеров. Однако на практике наличие в продукте нафтеновых и ароматических уг.певодородов, а также тенденция к диспропорционированию между высоко и низкокипящими фракциями значительно затрудняют промышленную реализацию этого процесса. По-видимому, парафиновые углеводороды фракции С. являются наиболее высококипящими из тех, которые целесообразно подвергать изомеризации, так как углеводороды фракций Сз, С и Сщ даже после низкотемвературной изомеризации до равновесного состояния над катализаторами Фриделя-Крафтса неспособны повысить октановое число фракций настолько, чтобы удовлетворить требованиям сегодняшнего дня. [c.165]

    В случае катализаторов Фриделя-Крафтса протон выделяется из промотирующого агента, обычно галоидоводородной кислоты. Нанример, образоваиие ионов карбония в присутствии хлористого алюминия, про- мотированного хлористым водородом, может быть представлено следующей схемой  [c.215]

    Дихлорадканы, у которых по крайнон мере один иа атомов хлора соединен с третичным атомом углерода, в присутствии катализаторов Фриделя-Крафтса могут 1 онденоиро1 аться с этиленом и хлорэтиленом по следуюш ей схеме [58] ,  [c.222]

    Каталитическая макрополимеризация изобутилена. Полимеризация изобутилена при температурах ниже —70° С в присутствии катализаторов Фриделя-Крафтса, таких как хлористый алюминий, фтористый бор и четыреххлористый титан, приводит к образованию высокомолекулярных полимеров, обладающих эластическими свойствами [63]. Внесение, например, фтористого бора в жидкий изобутилен при —80° С вызывает мгновенную, почти взрывную реакцию в противоположность этому полимеризация при температуре кипения изобутилена (—6° С) требует индукционного периода и продуктом такой полимеризации являются лшдкие масла. Увеличение температуры от —90 до —10° С вызывает уменьшение молекулярного веса полимера от 200 ООО до 10 ООО. [c.227]

    Карбоний-ионная полимеризация . Кроме полимеризации, протекающей по свободно-радикальному механизму, которая рассматривалась в предыдущем разделе, ряд мономеров дает полимеры высокого молекулярного веса в присутствии сильных киелот и класса веществ (AI I3, Sn J , BF3, Jg и т. д.), часто объединяемых под общим названием катализаторы Фриделя—Крафтса или кислоты Льюиса . Поскольку все эти реагенты принадлежат к соединениям того типа, которые индуцируют типичные реакции с образованием ионов карбония в органических ве- [c.156]

    Очевидно, что полимеризация проходит при помощи цепной реакции. Это может быть цепь свободных радикалов, если первоначальное инициирование реакции осуществляется перекисями или радиацией или же это ионная цепь, если реакция катализирована карбоний-иопом или карбанионом. Катализаторами, снабжающими процесс карбоний-ионами являются кислоты (серная, сернистая, фосфорная, борофосфорная, фтористый водород, ди-водород-фтористо-борная) и катализаторы Фридель — Крафтса (хлорид и бромид алюминия, трифторид и трихлорид бора, хлорид железа, хлористый цинк, хлорид олова и хлорид титана) [323]. Примером катализаторов, образующих карбанионы, являются натрий [324—326], алкил-натрий-натрий-алкоокисло-натрий хлорид [327—330] и другие натрийорганические соединения [331]. В соответствии с теорией реакций при помощи кар-боний-иона протон кислотного катализатора присоединяется к олефиновой связи, образуя положительно заряженный остаток. [c.106]

    Природа начальной стадии карбоний-ионной полимеризации является особенно важной, поскольку, как и в свободно радикальной реакции полимеризации она является ключом, при помощи кotopoгo можно обеспечить воспроизводимость и контроль реакции. Легкая полимеризация соответствующих олефинов в присутствии катализаторов Фриделя—Крафтса привела в более ранних работах к предположению, что инициирование цепи может происходить в результате электрофильной атаки таких реагентов па л-электроны двойной связи [123], нанример  [c.157]

    Галоидметаллы как катализаторы. В присутствии свежеприготовленного безводного хлористого алюминия этилен [22е] полимеризовался при 25° с образованием флуоресцирующей жидкости, 50% которой выкипало выше 200°. Жидкий нродукт, кипящий ниже 280°, состоял главным образом из парафинов, а вышекипящая часть содержала циклопарафины. Хотя смешанные полимеры обычно получаются в результате действия галоидметаллов типа катализаторов Фриделя—Крафтса на низкомолоку-лярные олефины, тем не менее нри определенных условиях в присутствии хлористого алюминия идет и истинна я полимеризация [64]. [c.201]

    Катализаторы. Как уже упоминалось выше, кислотные катализаторы можно подразделить на два класса соли галоидоводородных кислот тина Фриделя —Крафтса и кислоты, способные к переносу протона. Из последнего класса для промышленных процессов алкилирования предложены два катализатора — серная кислота и фтористый водород как наиболее подходящие, так как они являются жидкостями и обращение с ними проще. Однако алкилирование этиленом в их присутствии проходит нелегко, вероятно, вследствие устойчивости образующихся нри этом сложных этиловых эфиров. Этилирование изобутана проходит с исключительно высоким выходом в присутствии хлористого алюминия и некоторых других катализаторов типа катализаторов Фриделя—Крафтса. Разработан промышленный процесс производства 2,3-ди1 етплбутана по [c.309]

    При мольном соотношении фенола и 2-хлорпропена 5 1, 52 °С и 2,5 ат в присутствии хлористого водорода и промотора — этилмеркаптана за время реакции 6 ч степень конверсии 2-хлорпропена в дифенилолпропан составила 30%, а в 2,2-дихлорпропан — 22% (без добавки этилмеркаптана эти величины соответственно равны 32,6 и 40,2%) . На катализаторах Фриделя — Крафтса удается значительно повысить выход дифенилолпропана с AI I3 выход продукта достигал 62% на израсходованный 2-хлорпропен. При использовании BFg выход дифенилолпропана был еще больше — 96% от теоретического  [c.101]

    Реакции олефинов с хлорангидридами органических кислот обычно проводятся в присутствии хлористого алюминия. Без катализатора Фриделя-Крафтса оксалилхлорнд не реагирует с триметилэтиленом, октеном-1, цетеном-1 или циклогексеном, даже если реакция промоти-руотся облучением светом или добавкой перекисей [44]. [c.362]

    При исследовании взаимодействие типичных комплексов Фриделя-Крафтса с ароматическими углеводородами, галоидводородами и галоидалкилами в каждом случае обнаруживается присутствие двух рядов соединений одного, производного от димерного галоидного алюминия, и другого от мономерного. Отсюда следует, что более слабые основания образуют комплексы только с димерной формой, сильные же основания могут образовывать производные обоих типов в зависимости от условий. Это наблюдение наводит па мысль, что галоидные соли алюминия могут действовать как катализатор Фриделя—Крафтса в виде А12Хд и в виде А1Х3, причем первый является более электрофильным и поэтому более активным катализатором. [c.438]

    Ориентация в реакциях Фриделя—Крафтса. Ориентация, наблюдаемая при образовании ди- и три-алкилбонаолов прн алкилировании по Фриделю—Крафтсу, рассматривалась как аномальная. В присутствии небольших количеств катализатора Фриделя-Крафтса и при очень мягких условиях наблюдалось образование не меное 30% и(-диалк 1лнр0из-водного (табл. 7). В присутствии молярных количеств катализаторов образовавшийся продукт представлял собой почти исключительно 1,3-ди-алкил- или 1,3,5-триалкнлбензолы [2381. [c.442]

    Добавление катализаторов Фриделя — Крафтса способствует более глубокому хлорированию. Например, введение шести атомов хлора в молекулу дифенилолпропана было достигнуто путем добавления стехиометрического количества хлора в раствор дифенилолпропана в инертном растворителе при 25—40 °С в присутствии катализаторов Фриделя — Крафтса или хлорированием в две стадии (см. табл. 5). Первую стадию, дающую тетрахлорпроизводное, проводили в интервале 10—25 °С и без катализатора вторую стадию, ведущую к гексахлорзамещенному, — при 25—50 С в присутствии катализатора . [c.25]

    В качестве вязкостных присадок применяются и поливинилалкиловые эфиры. Поливинилалкиловые эфиры получают катионной полимеризацией простых виниловых эфиров в присутствии катализаторов Фриделя — Крафтса или Циглера — Натта. Полимеры винилбутилового эфира (виниполы) выпускаются двух марок ВБ-2 и ВБ-3, которые различаются молекулярной массой  [c.141]

    Олигопропилен по сравнению с олигоэтиленом не обладает высокими вязкостно-температурными свойствами и термостабильностью, что объясняется наличием в молекулярной цепи боковых ответвлений. Поэтому наиболее целесообразным способом получения синтетических масел [пат. США 3923919, 4182922] является соолигомеризация пропилена с этиленом в присутствии стерео-специфических катализаторов с последующим гидрированием полученных соолигомеров. Широкие возможности варьирования структуры соолигомеров открываются при использовании в качестве исходного сырья различных мономеров этилена, пропилена, стирола, бутадиена и др. Согласно пат. ГДР 109226, например, синтетические смазочные масла получают соолигомеризацией под давлением алкенов С4 или бутеновой фракции газа пиролиза с бутадиеном-1,3 в присутствии катализатора Фриделя — Крафтса. [c.155]

    Используемые в качестве высокотемпературных смазочных материалов и гидравлических жидкостей масла, состоящие из моно- и дизамещенных изоалкилбензолов с молекулярной массой 300—1500, рекомендуется [пат. США 360045] получать алкилированием бензола полиизобутиленом при температуре от —18 до —70°С в присутствии промотированного катализатора Фриделя — Крафтса. В ряде случаев для повышения термостабильности ал-килбензолы гидрируют. Однако, как указано в франц. пат. 1556958, при гидрировании алкилбензолов с получением алкилзамещенных циклогексанов, наблюдается некоторое ухудшение низкотемпературных свойств. [c.156]

    Один из основных недостатков промышленной технологии получения этилбензола в присутствии катализаторов Фриделя — Крафтса — необходимость тщательной очистки сырья и прежде всего этилена. Применение цеолнтного катализатора ZSM-5 позволяет проводить реакцию с разбавленным этиленом при концентрациях 15—20% (масс.), причем можно использо- [c.241]

    Изомеризация. Сущность процесса заключается в превращении низкооктановых нормальных парафиновых углеводородов, преимущественно фракций Сб—Сй или их смесей, в соответствующие изопарафиновые компоненты с более высоким октановым числом. На промышленных установках в среде водорода и при других соответствующих условиях можно получать до 97% (масс.) изоме-ризата. Обычно применяемые при изомеризации бифункциональные и цеолитсодержащие катализаторы с благородными и редкими металлами (Р1, Рс1, РЬ, 1г и др.) периодически регенерируют. Реже и не для промышленных процессов применяют катализаторы Фриделя — Крафтса. [c.10]


Смотреть страницы где упоминается термин Катализаторы Фриделя Крафтса: [c.219]    [c.225]    [c.435]    [c.446]    [c.26]    [c.29]    [c.95]    [c.357]    [c.69]    [c.122]    [c.150]   
Органическая химия (2002) -- [ c.398 , c.402 ]




ПОИСК





Смотрите так же термины и статьи:

Фридель

Фриделя Крафтса



© 2025 chem21.info Реклама на сайте