Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распространение пламени в потоке

    Факельные системы должны обеспечивать расчетную газовую нагрузку — быстрый отвод больших объемов горючих газов к факелу при минимальном сопротивлении системы со скоростью в устье трубы порядка 60 м/с. Скорость потока зависит от состава газовоздушной смеси и содержания в ней горючего. Если скорость потока в устье трубы слишком велика, то пламя факела может оторваться. При уменьшении скорости потока пламя может проникнуть внутрь горелки. Устойчивое горение газовой смеси, устанавливается при равенстве скорости истечения газа скорости распространения пламени для данной горючей смеси. [c.205]


    Как-показали результаты проведенных работ, при температуре продуктов сгорания керосина приблизительно ЗОО" С ток ионизации представляет собой пульсирующую линию с отдельными ясно выраженными пиками, частота и амплитуда которых характеризуют количество и температуру отдельных объемов продуктов сгорания, проходящих через межэлектродный зазор. Осциллографическая запись тока ионизации (рис. 33) свидетельствует о наличии некоторой постоянной составляющей ионизационного тока, соответствующей общему уровню ионизации продуктов сгорания и их температуре. Кривая ионизационного тока, полученная для продуктов сгорания с температурой около 1000° С (см. рис. 33, А), не имеет отдельных ясно выраженных пиков тока ионизации, которые наблюдались при более низкой температуре. Исследование тока ионизации пульсирующего холодного пламени (—250° С) показывает (см. рис. 33, В), что пламя это представляет собой совокупность отдельных гор щих объемов пара, количество которых не остается постоянным во времени в каждой данной точке факела. Осциллографирование тока ионизации при воспламенении и горении распыленного топлива Б турбулентном потоке воздуха при различных условиях дает в общем одинаковую картину (см. рис. 33, Г) с тремя четко выраженными областями, характерными для этого процесса областью первоначального зажигания факела, областью распространения пламени от начального очага горения по всему объему факела и областью установившегося горения. В начальный момент времени, когда в холодной топливо-воздушной смеси происходит электрический заряд, воспламеняющий эту смесь, датчик регистрирует отдельные всплески ионизационного тока, источником которого является сам электрический заряд (линия / на рис. 33). О воспламенении топлива можно судить по линии динамического напора воздуха (линия, 3), которая в этот момент имеет значительный подъем. В последующий период происходит распространение пламени от начального очага по всему объему факела, о чем свидетельствует изменение характера кривой тока ионизации и динамического напора воздушного потока. [c.68]

    В турбулентном пламени, как уже указывалось выше, часто такое положение пламени вблизи горелки не наблюдается. Наоборот, здесь существуют лишь локальные области, в которых максимальная скорость распространения пламени может превышать скорость поступления смеси поэтому точка, в которой находится пламя, также перемещается по мере перемещения этих локальных областей малой скорости в турбулентном потоке. Это наглядно видно из скоростных снимков пламени, например, опубликованных в литературе [44]. Кроме того, во всех случаях фронты пламени должны перемещаться в турбулентной смеси с максимальной скоростью распространения пламени предварительно приготовленной смеси, что ведет к вытягиванию и растеканию пламени. Если пламя уже не находит достаточно больших областей, в которых оно может поглощать поступающий поток и не гаснуть, то произойдет его погасание, если только оно не будет поддерживаться при помощи пилотной горелки или других источников энергии. [c.328]


    Если V слишком мала для 8ь, то даже при очень плоском факеле фронт пламени в конце концов исчезает внутри трубы Бунзена, пламя будет либо пульсировать, либо проскакивать и устанавливаться на срезе инжектирующего сопла. Если 51, слишком мала даже для очень длинного факела, то фронт пламени отделится от края горелки пламя в конце концов сорвется и погаснет. Однако между продольной скоростью распространения пламени и скоростью газового потока можно установить такое соотношение, которое обеспечит устойчивость фронта пламени. [c.49]

    Если вся движущаяся среда состоит из горючего газа, за зоной стабилизации обычно следует зона распространения пламе- ни, в которой пламя распространяется от стабилизатора к стенкам. Если состав смеси в потоке неоднороден, то зона распростра- [c.181]

    На горелке Бунзена, представляющей собой трубку, в которую подается готовая горючая смесь, конус пламени получается различным в зависимости от расхода смеси. При больших расходах пламя может сорваться. На поверхности конуса пламени проекция скорости потока w на нормаль к поверхности равна скорости распространения пламени (рис. 6-4), т. е. [c.129]

    Воспламенение (зажигание) горючей смеси. Одним из наиболее замечательных свойств пламени является, как уже говорилось, свойство самовоспроизводиться. Чтобы началось горение газовой смеси, ее надо воспламенить или зажечь с помощью внешних источников энергии, т. е. создать в смеси начальный очаг реакции, полностью воспроизводящий механизм распространения пламени. В качестве внешних источников энергии могут служить электрическая искра, небольшое дежурное пламя, специальное пиротехническое приспособление накаленное тело, излучающее энергию, световой поток, лазерный пробой и т. д. С помощью этих источников энергии создается интенсивный поток световой и в некоторых случаях тепловой энергии, достаточный для воспроизведения процесса распространения пламени. Создание в горючей смеси очага пламени,, способного к самопроизвольному распространению, является основным, определяющим условием зажигания смеси. [c.125]

    Метод плоского пламени. Горючая смесь поступает в нижнюю часть широкой трубы ( 6 см), проходит через ряд узких каналов, слой стеклянных шариков, другой ряд узких каналов и сгорает плоским пламенем. Эта труба помещается в более широкую трубу, куда подается инертный газ, чтобы предотвратить подсос воздуха к пламени. Скорость и состав пламени регулируют так, чтобы сделать пламя плоским. Определяют диаметр пламени и объемную скорость потока и смеси и находят ы , разделив объемную скорость на площадь фронта пламени. Скорость распространения пламени, которая может быть измерена этим методом, не превышает 15 см/с. [c.363]

    Если скорость распространения пламени больше, чем линейная скорость газового потока, то зона реакции продвинется назад в форсунку если скорость потока слишком велика., пламя выходит за пределы реактора. [c.382]

    Для различных горючих газовых смесей должны использоваться специально сконструированные горелки. При подаче смеси газов фронт пламени поддерживается над соплом горелки за счет быстрого протока газа через сопло. Фактически скорость протока газа обычно в 2—3 раза превышает скорость распространения пламени. Наиболее распространены в практике атомно-абсорбционного анализа щелевые горелки, позволяющие получать тонкие плоские пламена с большой длиной поглощающего слоя (рис. 3.38). Горелка состоит из двух идентичных заготовок из подходящего сплава. При совмещении этих заготовок в верхней части образуется прямоугольная щель длиной до 12 см, шириной менее 1 мм и высотой около 1 см, обеспечивающая ламинарный поток газа. Обе части горелки стягиваются винтами. Горелку можно поворачивать относительно оси, меняя тем самым длину поглощающего слоя. [c.150]

    Пламя воспламенившегося топлива распространяется с различной скоростью. На скорость распространения пламени, кроме природы горючего, оказывают влияние такие факторы, как соотношение горючего и воздуха, предварительный нагрев газовоздушной смеси, характер потока смеси (ламинарный, турбулентный или переходный), каталитическое влияние стенок топочного пространства и другие факторы. [c.51]

    Для исследования, проведенного в лаборатории Института им. П. И. Баранова, был выбран открытый стационарный факел с центральным источником поджигания. Так как размеры источника были малы, то можно было принять, что образование фронта пламени происходит от точечного источника поджигания в потоке. Пламя от точечного источника распространяется с некоторой скоростью, определяемой механизмом турбулентной диффузии и нормальной скоростью распространения пламени. Поверхность пламени при распространении его в неподвижном газе представляла бы собой поверхность сферы, но при горении в потоке пламя сносится набегающим потоком горючей смеси и осредненный фронт пламени представляет собой (приближенно) поверхность конуса, ось которого совпадает с ОСЬЮ потока. [c.230]


    Однако имеется полная возможность восстановить потерянную способность удерживать пламя у устья трубки и при достаточно значительных форсировках, ттри которых движение потока горючей- смеси заходит в область беспорядочно-смесительного (турбулентного) течения. Для этой цели достаточно, например на пути потока поставить какое-нибудь плохо обтекаемое тело создающее развитую зону местного торможения этого потока Примером такого местного затормаживания потока может слу жить схема д фиг. 40, где в середине трубки расположена не большая поперечная площадка. В этой зоне затишья при поджигании смеси пламя сядет по краям площадки, что будет свидетельствовать о новом возникновении некоторого участка прямого уравновешивания встречных скоростей поступательной скорости потока и встречной скорости распространения пламени, достаточного для поджигания быстро движущейся вокруг этой зоны остальной части горючей смеси. Легко понять, что при таком центральном поджигании косой фронт пламени примет уже форму обратного конуса с опрокинутой вниз вершиной в центре поджигающей зоны. [c.121]

    При горении в потоке распространение пламени сопровождается движением газа, если же пламя распространяется в покоящемся газе, то и в этом случае имеет место движение, вызванное тепловым расширением. Движение газа искривляет и увеличивает фронт пламени. Так как зона горения очень тонка, то при искривлении фронта пламени структура зоны горения не будет нарушаться, а только будет увеличиваться его поверхность. Вследствие этого скорость нормального распространения пламени, а также и количество газа, сгорающего на единице поверхности, не будут меняться, общее же количество газа, сгорающего за единицу временн, будет увеличиваться пропорционально увеличению поверхности фронта пламени. Следовательно, нормальная скорость распространения пламени не зависит от гидродинамических условий, а зависит только от физико-химических свойств горючей смеси, т. е. является физико-химической константой. [c.123]

    В конструкциях всех устройств для сжигания топлива с полным перемешиванием газа и воздуха до входа в горелочный туннель есть общие черты. Для предотвращения обратного удара (проскока) пламени в горелку горящая смесь должна входить в печное пространство со скоростью, большей скорости распространения пламени. Чем больше скорость струи горючей смеси, 7ем больше расстояние точки воспламенения от устья горелки, если не предусмотрены средства для торможения всего или части потока. Горение начинается в той точке струи, где ее скорость равна скорости распространения пламени, при условии, что температура смеси газа и воздуха равна или выше температуры воспламенения. Если эта точка расположена в устье горелки (предельный случай), пламя может проскочить в горелку. [c.72]

    Итак, фронт пламени обладает способностью генерировать турбулентность. В результате скорость горения возрастает. Поэтому, если известен способ, позволяющий усилить турбулентность, генерируемую пламенем, то можно экспериментально получить очень большую скорость горения. Например, при распространении пламени в трубе перед источником зажигания можно установить перегородку, снабженную соплом. Когда начнется распространение пламени от очага зажигания, расширяющийся газ создаст высокоскоростной турбулентный поток, истекающий из сопла. При прохождении фронта пламени через сопло пламя также станет турбулентным, и скорость горения возрастет. Устанавливая такую перегородку с соплом и пропуская через него пламя, удается экспериментально осуществить предельно высокую скорость горения [27]. На с. 162 приведены фотоснимки, иллюстрирующие распространение турбулентного пламени в замкнутой цилиндрической камере сгорания диаметром 9 см и высотой 3 см [28]. Перед свечой зажигания, вмонтированной в стенку камеры сгорания, была размещена дугообразная перфорированная пластина. Течение смеси, возникающее перед фронтом пламени, с высокой скоростью проходило через отверстия, генерируя турбулентность. [c.164]

    Рассмотрим форму и особенности широко распространенных диффузионных пламен. Диффузионные пламена наблюдаются при горении неперемешанных газов, а также при горении металлов, жидких и твердых органических и элементорганических соединений в окружающей окислительной среде. На основе представлений об определяющей роли диффузии при горении в ряде работ [2—6] проведен теоретический анализ характеристик диффузионного пламени. Бурке и Шуман в 1928 г. рассмотрели горение параллельных ламинарных потоков горючего и окислителя, движущихся с одинаковыми скоростями, и получили уравнение, описывающее форму и размеры пламени. Полученные в предположении бесконечно большой скорости реакции зависимости, определяющие форму и размеры пламени, оказались в удовлетворительном соответствии с опытом. Расчеты основывались на рассмотрении взаимной диффузии горючего газа и кислорода. Случай, рассмотренный Бурке и Шуманом, является частным, однако результаты расчетов имеют общее значение и могут быть применены, например, к диффузионным пламенам жидкостей [2]. [c.11]

    Таким образом, пламя движется по отношению к свежей смеси со скоростью Уп, а по отношению к продуктам сгорания — со скоростью С/г. Осуществляя процесс горения в потоке горючей смеси, можно получить стационарное пламя, для этого смесь должна поступать к фронту пламени со скоростью, равной нормальной скорости распространения пламени Ип- Продукты сгорания будут отходить от фронта пламени со скоростью [c.123]

    В данной книге не проводится детального анализа пламен, но ряд упрощающих предположений позволит дать оценку скорости горения или скорости распространения пламени и пользоваться этим понятием в дальнейшем. Например, можно считать, чтв устойчивое пламя, имеющее форму хорошо выраженной поверхности, является результатом равпомерного потока реагентов в зону пламени, где состояние равновесия достигается за счет равной и противоположно направленной скорости горения. Далее можно предположить, что единственно важное с точки зрения стабильности пламени направление горения расположено под прямым углом к фронту пламени и что для [c.48]

    Смесь, в которой распространяется пламя, может находиться в движении. При распространении пламени в потоке по течению движение газов ускоряет его перемещение напротив, при перемещении пламени навстречу течению оно замедляется. Вектор скорости движения газов в общем случае не совпадает с направлением нормального распространения пламени, а составляет с ним некоторый угол. [c.125]

    При зажигании в устье горелки вблизи ее обреза в точках, где скорость потока равна скорости нормального распространения пламени 1/п пламя держится устойчиво, образуя зажигающее кольцо, обеспечивающее непрерывное зажигание поступающей смеси по периферии струи. У стенок горелки, где скорость смеси менее чем 11п, пламя не может проникнуть в горелку, так как вследствие теплоотдачи через стенки, скорость распространения пламени уменьшается и становится меньше скорости струи в этом месте. [c.147]

    На выходе из горелки профиль скорости в потоке практически сохраняется, а зона действия теплоотвода к стенкам горелки сокращается. Вследствие этого скорость распространения пламени постепенно увеличивается. Начиная с некоторого расстояния от устья горелки имеются сечения (сечение ///, рис. 8-4), где кривые W и Un пересекаются в двух точках. На участке между точками пересечения профилей W и Un скорость распространения пламени Un больше скорости потока, а в остальных участках сечения Unмежду сечениями И и III существует такая точка, в которой скорость пламени как раз равна скорости смеси W. В таких точках по периферии горелки пламя удерживается стационарно, обеспечивая естественную стабилизацию факела постоянно действующим зажигающим кольцом. [c.150]

    После воспламенения горючей смеси и формирования фронта пламени дальнейшее распространение пламени происходит с са-моускорением (преддетонационный период). В этот период времени, согласно модели АХП-горения, управляющая и управляемые системы функционируют в нестационарном режиме, при котором в каждый последующий момент времени интенсивность излучения пламени и, соответственно, интенсивность потока продуктов предпламенного превращения, поступающих в пламя, непрерывно возрастают. [c.143]

    ЭТИХ представлений, считают, что мелкомасштабная турбулентность носит определяющий характер, а крупномасштабная — определяемый. Возникновение в зоне горения мелкомасштабной турбулентности влечет за собой увеличение ширины зоны горения, что приводит к постепенному освоению этой зоной пульсаций все более крупных масштабов. При возрастании роли крупномасштабного механизма ускорения процесса горения падает значение мелкомасштабного механизма, и наоборот. Процесс крупномасштабного ускорения в условиях нестационарного горения приводит к быстрому росту скорости распространения пламени за счет расширения зоны горения б. В дальнейшем по мере то о, как пламя становится стационарным, роль крупномасштабного ускорения процесса горения становится все меньше в связи с тем, что зона горения постепенно расширяется за счет мелкомасштабного механизма ускорения и поглощает 1зсе пульсации более крупных масштабов. В связи с тем, что в турбулентном потоке могут возникать и исчезать турбулентности тех или иных масштабов, ширина зоны горения даже при стабилизированном горении может меняться это приводит к характерной вибрации и шумам в турбулентном пламени. [c.143]

    В парогенераторарс горючая смесь подается в топочную камеру через горелки со скоростью порядка 30—60 м/с, а в форсированных камерах сгорания эта скорость может достигать 150—200 м/с. При условиях, имеющих место в топочной камере, скорость распространения пламени в зоне воспламенения значительно меньше и составляет для энергетических топлив несколько метров в секунду. Для обеспечения существования стационарного факела при указанном соотношении скоростей необходимо наличие в топке непрерывного мощного источника зажигания, от которого пламя может распространиться по всему сечению потока горючей смеси. Следовательно, для стабилизации факела в топочной камере, т. е. для удержания пламени в нужных геометрических координатах, а именно у устья горелок, необходимо обеспечить непрерывное зажигание горючей смеси. Критерием устойчивого зажигания является наличие распространения пламени от местного источника воспламенения по всей струе горючей смеси. [c.165]

    НИЯХ В камере наклон кривых на рис. 48 различен (более пологий для низкого давления). Если давление понижать медленно, то процессы в газовой и твердой фазах будут успевать подстраиваться под новое значение давления, а мгновенная скорость горения — достигать значения, соответствующего стационарному горению при заданном мгновенном значении давления в камере. Погасание заряда произойдет лишь тогда, когда давление станет ниже порогового значения, необходимого для поддержания непрерывного горения. Именно таким способом определяют значение р ор в бомбе Кроуфорда. Для получения надежных результатов необходимо, чтобы скорость снижения давления с1р1сИ не превышала 0,01 МПа/с. Если скорость сброса давления йр1са велика, то не все параметры изменяются достаточно быстро, и будет возникать запаздывание между распространением тепловой волны в газе (которое будет соответствовать низкому давлению) и распространением тепловой волны в твердом теле (которое будет соответствовать высокому давлению). Это приводит к разрыву в производной температуры Т з на поверхности горения. В таком случае газофазные реакции будут протекать медленнее и не смогут вовлекать в химическое превращение газы, образующиеся при пиролизе твердого топлива, вследствие чего пламя может погаснуть. При этом тепловой поток в твердую фазу 9+5 быстро уменьшается, температура поверхности Тз падает и происходит погасание. [c.98]

    Здесь следует, однако, отметить, что оценки основывались на характеристиках турбулентности в набегающем потоке. В пламени эти характеристики могут меняться, о чем свидетельствуют следующие соображения. При К < 1 минимальный масштаб пульсаций скорости в свежей смеси много больше толщины фронта пламени 0 . Это означает, что пламя можно рассматривать как локально плоское. В газодинамическом приближении (а -> 0) такое пламя неустойчиво относительно возмущений с любой длиной волны (Ландау [1944]). Учет эффектов, обусловленных вязкостью и теплопроводностью, проведен в книге Нестационарное распространение пламени под редакцией Маркштейна [1968], Истратовым и Либровичем [1966 а, б]. В этих работах показано, что гармонические возмущения с длиной волны / > 1er неустойчивы, а возмущения с длиной волны / < let устойчивы. Эти выводы подтверждены экспериментально Петерсоном и Эммонсом [1961], которые исследовали устойчивость пламени стабилизированного колеблющейся проволочкой. Обработка этих данных показывает, что [c.225]

    На рис. 7.6 приведена схема экспериментальной установки, позволяющей воздействовать на пламя бунзеновской горелки ультразвуковыми волнами. Внутренний диаметр трубки горелки равен 6 мм ультразвуковые волны падают на конус фронта пламени снизу, со стороны потока несгоревщего газа. Были получены фотографии пламени и определена скорость горения по методу измерения площади поверхности пламени. Некоторые результаты опытов приведены в табл. 7.4. Действие ультразвуковых волн вызвало увеличение скорости горения примерно на 14%. При этом фронт пламени независимо от наличия или от отсутствия ультразвука оставался ровным. Этот факт свидетельствует в пользу того, что ускоряюн ее действие ультразвука на распространение пламени осуществляется подобно действию мелкомасштабных пульсаций, которое будет рассмотрено в следующем параграфе. [c.148]

    Хотя приведенное выше описание является до некоторой степени упрощенным, в нем отражены существенные характеристики процесса стабилизации пламени телами илохообтекаемой формы. К ним относятся следующие характеристики 1) наличие зоны рециркуляции 2) размер зоны рециркуляции, а также температура, скорость и концентрация активных частиц в горячих газах в этой зоне должны быть такими, чтобы втекающая в эту зону свежая горючая смесь воспламенялась и реагировала настолько быстро, чтобы зона рециркуляции находилась в условиях, необходимых для последующего зажигания 3) распространение пламени, которое может быть инициировано в зоне рециркуляции 4) независимо от того, угаснет ли в зоне рециркуляции иламя до того, как распространится по всей смеси, или оно вообще не будет инициировано, химическая реакция и перенос количества движения, тепла и массы на границе горючей смеси и продуктов сгорания, вытекающих из зоны рециркуляции, должны быть такими, чтобы смесь воспламенялась ниже ио потоку, инициируя таким образом другое пламя, способное распространиться по всей камере сгорания 5) распространение пламен должно происходить так, чтобы не нарушался указанный выше механизм инициирования пламени очевидно, что проскок пламени будет нарушать этот механизм. [c.90]

    В потоке горючей смеси, входящей в пламя со скоростью, равной скорости его распространения, должен установиться стационарный фронт пламенп. Однако в действитольностп одного этого условия оказывается еще. недостаточно, ибо самые малые местные колебания скорости потока или скорости раснространения пламени, например вследствие искривлений его поверхности, могут привести к нарушению равновесия п смещению фронта пламени. Поэтому для установления стационарного пламени необходимы дополнительные условия, обеспечивающие его стабильность. Стабилизация пламен в ламинарных и турбулентных потоках, представляющая особый технический интерес, по существу всегда основана на создании фиксированного источника ненрерывного поджигания горючей смеси продуктами ее сгорания — например, в кольцевом пространстве, отделяющем конус пламени от края горелки, или в зоне рециркуляции за плохо обтекаемым телом, номещепным в потоке горючей смеси. [c.166]

    В первом опыте построения теории распространения иламени без применения температуры воспламенения, в работе Льюиса и Эльбе (1147], см. также (37, стр. 214]), пламя рассматривалось как непрерывное ускорение реакции. Тепловой поток из зопы реакции в свежий газ осуществляется как теплопроводностью, так и диффузионным перемешиванием свежего газа с продуктами сгорания. При этом в качестве рабочей гипотезы было принято, что ...сумма термической и химической энергии на единицу массы остается постоянной в любом элементарном слое между свежим и сгоревшим газом (там же). Применительно к выбранному конкретному примеру, нладшни распада озона, предполагалось учесть и роль диффузии активных цептров — атомов О. Одна) о это не было реализо- [c.178]

    В качестве образца, наиболее близкого к свойствам абсолютно холодного иламени, были выбраны холодные пламена в воздушных смесях СЗг, Б которых прп содержании приблизительно 0,03% СЗг адиабатический разогрев от реакцпи пе превышал 15°. Доказательством чисто цепного механизма распростраиения является наличие нижнего и верхнего пределов по давлению (см. рис. 158). Роль диффузионного потока активных центров в распространении этих пламен проявляется в том, что пределы по температуре для распространения пламени лежат в среднем на 100° ниже пределов возникновения холодного пламени (самовоспламенения) в условиях той же трубы, как это видно на том же рисунке. [c.209]

    Хотя общие аредставления о роли турбулентности в ускорении распространения пламеии появились, по крайней мере, еще с работ Маллара н Ле Шателье в виде воздействия на пламя движения свежего газа, создаваемого самим пламенем , но первые идеи о механизме воздействия турбулентных пульсаций скорости на пламя былп сформулированы только в 1940 г. 129] применительно к стабилизированному пламеии горелки Бунзепа. В дальнейшем проблема определения скорости турбулентного горения рассматривается независимо от самого способа стабилизации, которая, как отмечалось (см. 15), сводится в конечном счете к воспламенению потока свежего газа от пламенных газов — пилотного пламени, в рециркуляционной зоне за плохо обтекаемым телом пли над краем горелки. [c.256]

    Пламя в процессе распространения от периферии к центру одновременно относится потоком, и в результате этого достигает оси струи на некотором расстоянии от устья горелки, о бразуя конусообразный факел (рис. 8-4 и 9-1). Тонкая зона горения, образующая фронт пламени, обычно имеет ярко-голубой цвет, благодаря чему в пространстве факел четко выделяется. [c.148]

    Все рассмотренные выше теории нормального распространения пламени так же как и некоторые их модификации, не вошедшие в это рассмотрение, относятся к тому случаю, когда турбулизация газового потока не играет заметной роли. Турбулентное горение теоретически вцервые было рассмотрено Дамкелером [686], которому принадлежат также обстоятельные экспериментальные исследования влияния турбулентности на бунзенов-ское пламя при числах Рейнольдса до 17 ООО. Не останавливаясь на подробном рассмотрении турбулентного горения, исследованию которого посвящено большое число работ, отметим только, что согласно Дам-келеру [686], наблюдаемое при турбулизации газа ускорение пламени обусловлено двумя факторами увеличением скорости передачи тепла и подачи газа во фронт пламени при микротурбулентности, т. е. тогда, когда размеры вызванных турбулизацией газа неоднородностей малы по сравнению с шириной фронта, и изменением формы фронта пламени при макротурбулентности, когда размеры неоднородностей больше ширины фронта. Из теоретического рассмотрения турбулентного горения следует, что скорость пламени при турбулентном горении связана определенным соотношением со скоростью пламени в ламинарном потоке для этого соотношения различными авторами в соответствии с принятыми ими допущениями были получены различные аналитические выражения. [c.500]


Смотреть страницы где упоминается термин Распространение пламени в потоке: [c.83]    [c.49]    [c.76]    [c.417]    [c.421]    [c.98]    [c.646]    [c.81]    [c.103]    [c.176]    [c.179]    [c.261]    [c.361]    [c.125]   
Смотреть главы в:

Теория горения и топочные устройства -> Распространение пламени в потоке




ПОИСК





Смотрите так же термины и статьи:

Распространение пламени в ламинарном потоке

Распространение пламени в турбулентном потоке

Распространение пламени в турбулентном потоке смеси



© 2025 chem21.info Реклама на сайте