Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные соли

    Знание теплоты растворения соли в воде (или другом растворителе) и энергии кристаллической решетки той же соли дает возможность вычислить теплоту сольватации соли, т. е. теплоту образования сольватных оболочек вокруг ионов соли при их взаимодействии с растворителем. Например, теплота сольватации хлористого натрия соответствует процессу  [c.71]


    Гидролиз солей в водном растворе — это обратимая реакция взаимодействия ионов соли с водой по схематическому уравнению [c.64]

    Гидролиз является результатом поляризационного взаимодействия Ионов соли с их гидратной оболочкой. Чем значительнее это взаимодействие, тем интенсивнее протекает гидролиз. Упрощенно сущность процесса гидролиза можно представить следующим об-, разом. [c.265]

    Ионы, которые, подобно [Си(NHз)4] +, образуются путем присоединения к данному иону нейтральных молекул или ионов противоположного знака, называются комплексными ионами. Соли, в состав которых входят такие ионы, получили название комплексных солей. Известны также комплексные кислоты, комплексные основания и комплексные неэлектролиты .  [c.575]

    Обратный осмос и ультрафильтрование. Метод основан на разделении растворов фильтрованием через мембраны с диаметром пор 1 нм (обратный осмос) и 5—200 нм (ультрафильтрование). Эти мембраны пропускают молекулы воды и непроницаемы для гидратированных ионов солей или молекул недиссоциированных соединений. От обычного фильтрования такой процесс отличается возможностью отделять частицы меньших размеров. Давление, необходимое для очистки методом обратного осмоса, 6—10 МПа, а для ультрафильтрования 0,1—0,5 МПа. В качестве материала мембран используются ацетатцеллюлоза, полиамиды и другие полимеры толщиной 100—200 нм [5.22, 5.24, 5.55, 5.64]. [c.485]

    Растворы солей проводят электрический ток, и это их свойство сыграло чрезвычайно важную роль на первой стадии развития теорий химической связи. Электропроводность металлов обусловлена перемешением в них электронов ионы металла при протекании через него электрического тока остаются на своих местах. Кристаллические соли вообще не проводят электрический ток, но если расплавить соль, положительные и отрицательные ионы при наличии электрического напряжения могут в жидкости направленно мигрировать в противоположные стороны. Подвижность ионов соли оказывается еще большей, если соль растворена в воде и, следовательно, если ее ионы гидратированы. [c.40]

    Отсюда становится понятнее и явление прямого осмоса, которое можно представить следующим образом. При разграничении воды и водного раствора гидрофильной полупроницаемой мембраной на поверхности и внутри пор мембраны образуется слой связанной воды. Тепловое движение ионов солей в растворе приводит к тому, что они захватывают воду у поверхности мембраны, включая ее в свои гидратные оболочки, и переносят в объем раствора, где вода перераспределяется между остальными нонами. Уменьшение концентрации воды на поверхности мембраны, обращенной к раствору, компенсируется переходом чистой воды через мембрану. Переход воды, обусловленный работой подобного гидратного насоса , происходит до тех пор, пока силы, определяемые притяжением воды к ионам, не будут уравновешены силами гидростатического давления со стороны раствора. [c.204]


    В насыщенном растворе соли всегда должно иметь место постоянство произведения активностей ионов соли [c.512]

Рис. 1-7. Разрушение кристалла соли молекулами воды, сопровождающееся гидратацией ионов. Каждый ион соли в растворе окружен полярными молекулами воды, повернутыми к нему зарядами противоположного знака по Рис. 1-7. <a href="/info/168920">Разрушение кристалла</a> <a href="/info/997758">соли молекулами</a> воды, сопровождающееся <a href="/info/7839">гидратацией ионов</a>. Каждый ион соли в растворе окружен <a href="/info/314371">полярными молекулами воды</a>, повернутыми к нему <a href="/info/1492295">зарядами противоположного</a> знака по
    Наиболее важным свойством лантаноидов является их большое сходство между собой. Это сходство обусловлено главным образом тем, что последовательное заселение электронами касается низколежащих /-орбита-лей, что вызывает лишь небольшие изменения атомных и ионных радиусов ( 0,01 А) при переходе к каждому следующему элементу данного ряда. Преобладающим состоянием окисления у лантаноидов и в меньшей мере у актиноидов является состояние окисления + 3 почти все соединения этих элементов представляют собой ионные соли, содержащие дискретные ионы с зарядом -I- 3. Большое сходство лантаноидов друг с другом приводит к тому, что в природе они всегда встречаются вместе и с трудом поддаются разделению. [c.451]

    Энтропия тем больше, чем сложнее химический состав вещества. Это правило выполняется для кристаллов ионных солей с различным числом ионов на моль вещества  [c.63]

    Многие пленки обладают способностью пропускать через свои поры некоторые молекулы, однако для других молекул эти поры оказываются слишком малыми. Такие пленки называются полупроницаемыми мембранами. Одни из мембран пропускают воду, но не позволяют пройти ионам солей. Другие, с большими порами, пропускают воду, соли и небольшие молекулы, но задерживают белки или макромолекулы, имеющие молекулярную массу порадка нескольких тысяч. В настоящее время возможно изготовление микропористых фильтров со столь однородными размерами пор, что их можно использовать для разделения белков по размеру макромолекул. [c.145]

    Другое соображение о материальном балансе заключается в том, что полная концентрация положительного иона соли (скажем, иона натрия) должна быть равна исходной концентрации соли, поскольку этот ион не принимает участия в рассматриваемых реакциях  [c.474]

    Рассмотренная модель, названная нами капиллярно-фильтрационной [158], позволяет заключить, что обессоливание водных растворов электролитов обратным осмосом есть не что иное, как дегидратация ионов—отбор воды, наименее прочно связанной с ионами солей, мембраной под воздействием приложенного давления. [c.204]

    В.А. Сулин и М.Е. Альтовский считали, что меньшая соленость вод в менее погруженных слоях может быть обусловлена подземным испарением. К.В. Филатов объяснял повышение солености погруженных осадков опусканием более тяжелых ионов солей. Обе эти гипотезы неприемлемы потому, что в этих случаях следует предполагать меньшую соленость поровых вод в верхних горизонтах осадка по сравнению с соленостью вод бассейна седиментации, чего никогда не наблюдается. [c.76]

    Гидролиз — обменная реакция между веществом и водой. Ме.ханизм гидролиза для разных типов соединений различен и изучен недостаточно. Гидролиз солей можно рассматривать или как результат поляризационного взаимодействия ионов с их гидратной оболочкой, или как результат взаимодействия ионов соли с ионами воды. Различают гидролиз по катиону и гидролиз по аниону. [c.176]

    По этой же причине нельзя принять и гипотезу З.В. Пушкиной, которая считала, что тяжелые ионы солей, содержащихся в поровых водах, опускаются вниз, а легкие ионы воды поднимаются вверх. [c.76]

    К настоящему времени достаточно подробно исследованы и описаны как в отечественной, так и зарубежной литературе биологические методы извлечения ионов солей жесткости и других ионов металлов, а также нефтепродуктов из стоков маши- [c.118]

    Традиционно реакцию взаимодействия ионов соли с водой называют реакцией гидролиза соли . [c.78]

    Если катионы и анионы имеют небольшие заряды и значительные размеры, то их поляризующее влияние на молекулы воды невелико, т. с. взаимодействия соли с НаО практически не происходит. Это относится к таким катионам, как К+ и Са +, и к таким анионам, как С1 и N0 . Следовательно, соли сильного основания и сильной кислоты гидролизу не подвергаются. В этом случае равновесие диссоциации воды в присутствии ионов соли почти не нарушается. Поэтому растворы таких солей практически нейтральны (рН 7). [c.266]

    Гидролизу могут подвергаться химические соединения различных классов соли, углеводы, белки, эфиры, жиры и т. д. В неорганической химии чаще всего приходится иметь дело с гидролизом солей, т. е. с обменным взаимодействием ионов соли с ионами воды, в результате которого смещается равиовесие электролитической диссоциации воды. [c.202]


    Следует подчеркнуть, что, связывая гидролиз с поляризующим влиянием ионов соли, с акцепторной способностью катионов и донорной способностью анионов, мы имеем в виду лишь качественную сторону явления. К количественным или полуколичественным результатам такой [c.204]

    Все подземные воды по содержанию в них ионов, солей и коллоидов делятся на пресные, суммарное содержание минеральных веществ в которых не превышает [c.21]

    Прибавление небольших количеств сильной кислоты или щелочи тоже сравнительно слабо отражается на pH. Это объясняется тем, что при прибавлении кислоты ее ионы Н связываются с ацетатными ионами соли в недиссоциированные молекулы уксусной кислоты, а если прибавляется щелочь, то она связывается уксусной кислотой в соответствующий ацетат  [c.403]

    Электрохимические свойства меди и электродные реакции. Для меди характерны соединения одновалентного и двухвалентного ионов. Соли одновалентной меди в воде почти нерастворимы, соли двухвалентной меди хорошо растворимы и стойки. Между Си +, Си+ и Си в растворе существует равновесие  [c.304]

    Еще до обоснования теории растворов опытным путем было установлено правило, согласно которому подобное растворяется в подобном. Так, вещества с ионным (соли, щелочи) или полярным (спирты, альдегиды) типом связи хорошо растворимы в полярных растворителях, в первую очередь в воде. Метиловый, этиловый и пропило-вый спирты смешиваются с водой в любых соотношениях. По мере дальнейшего увеличения углеводородного радикала в молекуле [c.63]

    Интенсификацию процесса кристаллизации гипса и получение кондиционной воды обеспечивает метод активной затравки гипса и обработка в вихревом реакторе. Активная затравка гипса оказывает ориентирующее действие на ионы соли в растворе, приводя к повышению их концентрации вблизи затравки и способствуя зарождению новых центров кристаллизации, что в условиях взвешенного слоя интенсифицирует процесс кристаллизации гипса. В [c.123]

    В случае смеси солей наблюдается концентрационная поляризация, так как наличие других ионов может снизить концентрацию основного иона в приэлектродном слое. В некоторых случаях отмечается предельный ток по основному иону и начало разряда более отрицательного иона соли — добавки. [c.470]

    Для снижения жесткости воды она подвергается умягчению или обессоливанпю. Умягчение воды осуществляется термическим, химическим и физико-химическим методами. Наиболее. эффективен ионооб.мсиный метод, который основан на способности иоиитов обменивать свои подвижные ионы на ионы солей, растворенных в воде. Иониты, обменивающие свои катионы иа катионы солей, содержащихся в воде, ]1азываются ка- [c.117]

    На основе катализа Фридель — Крафтса можно предположить, что эти комплексы являются карбоний-ионной солью гипотетической кислоты, НАЮЦ. [c.142]

    Механизм возникновения диффузионного иотенциала связан с диффузией ионов соли в растворе против градиента ко1щен-трации. Между коэффициентом диффузии D,- иоиа и io подвижностью Ui существует соотнощение, которое было впервые выведено Нернстом  [c.565]

    Исследовано влияние количества и свойств растворенных солей на разделение суспензий глинистых сланцев [220]. Опыты проведены с применением анионоактнвного, катионоактивного и неионогенного флокулянтов в присутствии хлоридов натрия, кальция и магния, карбонатов натрия, кальция и магния, сульфатов натрия, магния, железа и алюминия при концентрации 100—5000 ч. на 1 млн. Установлено, что эффективность действия флокулянтов зависит от концентрации и валентности ионов солей, причем влияние этих факторов на каждый флокулянт различно. [c.196]

    Вычислите по уравнению Дебая — Гюккеля и по данным, при-педенным в табл. 5, средний коэффициент активности ионов соли Ba l2, если / = 2 10 при 298 К- [c.211]

    Соединения III и IV, называемые часто просто дисульфидами, играют значительную роль в процессе гидрофобизации поверхности минерала. Большинство исследователей считает, что дисульфиды способны к хемосорб-ционному закреплению на поверхности минерала [3]. Некоторое преимущество этих соединений по сравнению с ксантогенатами и аэрофлотами — их меньшая чувствительность к составу флотационной пульпы (наличию ионов солей жесткости и ионов тяжелых металлов), а также к присутствию окислителей и к pH среды. Бис-ксантогенаты и бис-(диалкилдитиофосфаты наряду с дисульфидной группой содержат серу в тионной форме, которая может оказывать существенное влияние на их поведение при флотации. [c.200]

    При гидролизе водным раствором соды процесс частично осуществляется гидроксильными ионами, образовавшимися при гидролизе содк водой, но в нем участвуют также ионы СОл и НСО3. Меха- [c.171]

    Гиперфильтрация и у л ь т р а ф и л ь т р а ц и я — методы разделения растворов фильтрованием через пористые мембраны. При гиперфильтрации мембраны имеют поры размером около С,i нм и пропускают молекулы воды, но непроницаемы (или полупроницаемы) для гидратированных ионов солей или недиссоцинро-ваиных молекул. Ультрафильтрация — разделение растворов, содержащих высокомолекулярные соединения, мембранами, поры которых имеют диаметр около 5—200 нм. Для гиперфильтрации применяются ацетатцеллюлозные, полиамидные и другие полимерные мембраны. При фильтровании давление фильтрации должно превышать осмотическое при гиперфильтрации солевых растворов рабочее давление составляет 5—10 МПа при концентрации солей 20—30 г/дм1 [c.247]

    Лекция 13. Гидролиз. Различные случаи гидролиза солем как резуль поляризационного взаимодействия ионов соли с мплекул ми воды. Степень и константа гидролиза. Значение гидролиза для технологических процессов, [c.180]

    Согласно обобщенной теории кислот и оснований в кислотном катализе катализатором может быть любое вещество, способное отщеплять протон, например ион (соль NH4 1). [c.422]

    Результаты лабораторных экспериментов показали принципиальную возможность развития водорослей и высшей водной растительности на солевых средах, приблршенных по химическому составу к минерализованным шахтным водам. Определена очищающая способность каждого вида организмов-агентов очистки относительно нефтепродуктов, взвешенных веществ, ионов солей жесткости и других ионов металлов. Для экспериментов использовались как чистые, так и смешанные культуры, выделенные из природы. Предварительно культуры организмов-агентов очистки были отобраны по специальному принципу тестирования. Все отобранные для опытов культуры относятся к эврибионтным формам, т.е. способны к существованию в самом широком диапазоне колебаний pH среды, химического состава и температуры. В качестве культурной жидкости первоначально использовались солевые среды общепринятой рецептуры Тамия, НИИБиопрома и МГУ. В ходе экспериментов оценивалась интенсивность роста низших водорослей и высших водных растений, физиологическое состояние и степень развития комплекса сопутствующих организмов. [c.119]

    Может возникнуть мысль, что насыщенный раствор одной какой-либо соли представляет собой малопригодную среду для растворения другого вида соли или сахара. Мы представляем себе насыщенный раствор соли, как раствор, в котором отсутствует свободная вода, так как все наличие воды идет на гидрацию ионов соли. Поэтому мы предполагаем, что в растворе нет воды, требуемой для растворения другой соли, или такого менее гидрофильного вещества, как сахар. Тем не менее фактически имеется возможность растворять в насыщенном растворе хлористого натрия как другой вид соли, так и сахар. Например, насыщенный водный раствор хлористого натрия (75%-ной относительной влажности) способен полностью удалить из искусственного щелка глюкозу, которой она была пропитана. Таким образом, мы принуждены заключить, что гидратизированные ионы соли обладают способностью сами действовать в качестве молекул растворителя. Раствор той же относительной влажности, состоящий из детергента и растворителя стоддард , в состоянии удалить при тех. же условиях лишь небольшую часть глюкозы (см. ссылку 156а). [c.188]


Смотреть страницы где упоминается термин Ионные соли: [c.218]    [c.448]    [c.365]    [c.132]    [c.120]    [c.54]    [c.445]   
Смотреть главы в:

Катализ Физико-химия гетерогенного катализа -> Ионные соли

Современная неорганическая химия Часть 2 -> Ионные соли

Современная неорганическая химия Часть 2 -> Ионные соли




ПОИСК







© 2025 chem21.info Реклама на сайте