Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Арилгалогениды синтез

    Алюминий — арилгалогениды синтез [c.206]

    Большое препаративное значение имеет реакция замены ди-азогруппы на группу СЫ, позволяющая ввести в органическое соединение еще один атом углерода. В известной степени она является аналогом синтеза Кольбе, позволяющего получать нитрилы алифатических кислот из алкилгалогенидов и цианида калия. По причинам, обсужденным ранее (см. разд. 2.1), в арилгалогенидах заменить атом галогена на нуклеофильные реагенты, в том числе иа группу СН, удается только в жестких условиях, поэтому эта реакция, проводимая в сравнительно мягких условиях, находит практическое применение при синтезе нитрилов ароматических кислот. [c.459]


    Присоединение реактивов Гриньяра к изоцианатам приводит после гидролиза к N-замещенным амидам. Выше реакция изображена так, что присоединение происходит к группе С = 0, но изоцианат-ион представляет собой резонансный гибрид, поэтому присоединение можно изобразить и по связи = N. В любом случае гидролиз приводит к амиду. Это очень хорошая реакция, и она может быть использована для синтеза производных алкил- и арилгалогенидов. Реакция проводилась также с алкиллитиевыми соединениями [364]. Изотиоцианаты дают N-замещенные тиоамиды, [c.378]

    Вторая реакция идет только в жестких условиях. Аналогично протекает гидролиз арилгалогенидов с образованием фенолов (разд. 4.2.2). Однако последний метод находит ограниченное применение и используется в промышленности только для синтеза самого фенола. [c.84]

    Исходными веществами для такого синтеза арилгалогенидов являются по существу ароматические углеводороды, которые превращаются в диазосоединения через промежуточные стадии нитрования и восстановления нитрогруппы  [c.203]

    Наиболее важной реакцией является синтез ароматических нитрилов нагреванием арилгалогенидов с цианидом меди(1). Некоторые примеры этой реакции приведены на схеме 7.9. [c.251]

    Соединения, образующиеся из алифатических или ароматических углеводородов при замещении одного атома водорода на фтор, хлор, бром или иод, называют алкил- или арилгалогенидами. Они полезны для синтеза более сложных органических соединений. При замещении нескольких атомов водорода образуются полига-логениды. [c.124]

    Арилгалогениды обсуждаются в отдельной главе потому, что они очень сильно отличаются от алкилгалогенидов по методам синтеза и свойствам. Арилгалогениды в целом относительно не реакционноспособны в реакциях нуклеофильного замещения, которые столь характерны для алкилгалогенидов. Однако присутствие некоторых других групп в ароматическом кольце резко повышает реакционную способность арилгалогенидов в отсутствие подобных групп реакцию все же удается осуществить, но лишь при использовании очень сильно основных реагентов или высоких температур. Мы покажем, что существуют два механизма нуклеофильного замещения в ароматическом ряду механизм бимолекулярного замещения (для активированных арилгалогенидов) и механизм элиминирования — присоединения, который включает образование очень интересного промежуточного соединения, называемого дегидробензолом. [c.781]


    МЕТОДЫ СИНТЕЗА АРИЛГАЛОГЕНИДОВ t. Из солей диазония (разд. 24.5 и 26.5) [c.783]

    Выше уже говорилось о том, что арилгалогениды характеризуются очень низкой реакционной способностью по отношению к нуклеофильным реагентам типа ОН , OR , NHg и N , которые играют такую важную роль в химии алкилгалогенидов. Вследствие этого нуклеофильное замещение в ароматическом ряду имеет гораздо меньшее значение в синтезе, чем нуклеофильное замещение в алифатическом ряду или электрофильное замещение в ароматическом ряду. [c.792]

    В настоящее время для осуществления прямого синтеза органохлорсиланов применяются реакторы нестационарного действия, в которых реакционная масса перемешивается — либо мешалкой (механическое перемешивание), либо с помощью взвешенного (псевдоожиженного) слоя, создаваемого за счет высокой скорости подачи алкил- или арилгалогенида в реактор. [c.71]

    Некоторые другие анионные уходящие группы, помимо галогенов, определены в уравнении (63), однако ни одна из них не нашла широкого применения в синтезе, поскольку эти группы не обладают более высокой способностью к отщеплению, чем бромиды, а арилгалогениды более доступны. [c.606]

    Если R — первичная группа, то RX может быть только винил-или арилгалогенидом, причем винильная группа R взаимодействует с сохранением конфигурации. Следовательно, карбокатион не является интермедиатом в этой реакции. Если R — третичная группа, то R может быть первичной алкильной, а также винильной или арильной группой. Это один из немногих методов синтеза сложных эфиров из третичных спиртов. Наилучшие результаты достигаются при использовании алкилиодидов, немного хуже реакция идет с алкилбромидами. В присутствии амина, по крайней мере в некоторых случаях, возможно непосредственно выделить амид. [c.226]

    В случае ароксидных нуклеофилов реакция промотируется солями меди [73а], в присутствии которых нет необходимости в наличии активирующих групп. Эта реакция служит методом получения диариловых эфиров и носит название синтез эфиров по Ульману [74] ее не следует путать с более важной реакцией сочетания Ульмана (реакция 13-16). Несмотря на присутствие солей меди, порядок реакционной способности типичен для нуклеофильного замещения [75]. Поскольку арилоксимедные (I) реагенты ArO u взаимодействуют с арилгалогенидами с образованием простых эфиров, было высказано предположение, что они являются интермедиатами в синтезе эфиров по Ульману [c.21]

    Арилирование соединений типа 2СНг2 аналогично реакции 10-96, рассмотренной в т. 2, где дано определение группы 2. Активированные арилгалогениды, как правило, дают хорошие результаты [130]. В присутствии избытка амида натрия в реакцию можно вводить даже неактивированные арилгалогениды [131]. Подобным образом можно арилировать также простые кетоны [132] и сложные эфиры. Реакция с неактивированными галогенидами происходит ио ариновому механизму и представляет собой метод расширения синтезов на основе малонового эфира (или сходных соединений) с использованием ароматических молекул. Основание здесь выполняет две функции оно отрывает протон от молекулы 2СН22 и катализирует реакцию с образованием дегидробензола. Реакция была использована для осуществления процесса замыкания цикла [133]  [c.29]

    Эту реакцию обычно проводят в водной или спиртовой среде о ц. водяной бане. Пригодными для синтеза галогеиндами являются первичные и ..., жые алкилгалогенлды, в также бензил- и арилгалогениды, если в последних ат галогена активированы НИтрогруппами, находяп нися в орго- или С алифатическими сульфинатами выходы обычно меньше, чем ( [c.590]

    Обзор по реакции Ульмана см. в работе [42]. Эта реакция имеет особое значение для синтеза бифенила и его производных. Иодиды реакционноспособнее бромидов, которые в свою очередь более реакционноспособны, чем хлориды. Однако можно успешно использовать бромиды и хлориды, если они имеют электроноакцепторные заместители, такие, как нитрогруппа, в орто- или пара-поло-жении. Выходы симметричных диарилов редко превышают 80% в случае несимметричных диарилов выходы, как и следовало ожидать, ниже. Весьма любопытно, что, поддерживая достаточно низкую температуру для того, чтобы наименее реакционноспособный арилгалогенид не вступал в реакцию сам с собой, сметанные диарилы можно получать с хорошими выходами. Механизм реакции, по-видимому, сложный, но упомянутое выше наблюдение указывает на наличие двухстадийного процесса. Возможно, что сначала из более реакционноспособного галогенида образуется медная соль, которая отлагается на поверхности меди, после чего происходит гемолитическое или гетеролитическое вытеснение менее активным галогенидом. Возможно также, что в реакции принимает участие анион меди "(СиАГг) [34]. Полагают, что активным началом является скорее закись меди, а не медь [43]. Действительно, для синтеза ди-фенилена требуется закись меди [44] [c.37]

    Галогеноводород, по-видимому, чаще используют при получении бромидов, чем хлоридов. Для этого в основном применяют 48%-иый бромистый водород в смеси с концентрироваппой серной кислотой [71 и сухой бромистый водород [8]. Первый с успехом использован для проведения реакции с низшими спиртами, а второй следует предпочесть для реакции с высшими спиртами [8, 91. Бромистый водород применяют также при реакции с двухатомными спиртами [10, 11]. Фенолы не превращаются в арилгалогениды под действием галогеноводородных кислот. Выходы алкилгалогенидов, полученные по этим методам синтеза, обычно составляют 80—90 . [c.375]


    В обзорных работах [II рассмотрены общие вопросы по синтезу" нитрилов. Как классические реакции обмена алкилгалогенида с цианистым натрием, так и реакции обмена между арилгалогенидами и цианидом одновалентной меди были значительно усовершенствованы путем применения апротонных растворителей (разд. А.1). Эти методы, наряду с дегидратацией амидов (разд. В.1) и оксимов-(разд. В.4), до сих пор остаются наиболее общими и надежными, путями получения нитрилов. Относительно новым методом, особенно полезным для получения низкокипящих нитрилов (разд. В.5), является реакция обмена между нитрилом и карбоновой кислотой. Реакции присоединения, вероятно, следует прежде всего рассматривать как метод получения цианидных групп, связанных с третичным атомом углерода (разд. Г). Большая часть других методов не имеет такого общего характера. Однако они могут быть подходящими и даже незаменимыми при получении какого-либо конкретного нитрила из единственно доступного исходного соединения. Например, а гипотетическом случае, при необходимости получить адаман-тилцианид, имея в качестве исходного материала только адамантан, можно было бы провести галогенирование с последующим обменом с цианидом, либо прямое цианилирование нли карбоксилирование с последующим амидированием и дегидратацией (разд. В.1). [c.431]

    МИХАЭЛИСА-БЕККЕРА РЕАКЦИЯ, синтез фосфорорг. соед. алкилироваиием или арилированием солей нейтральных гидрофосфорильных соед. (фосфитов, фосфинитов и фосфонитов щелочных металлов) при действии алкил- или арилгалогенидов или др. алкилирующих или арилирующих агентов, напр.  [c.94]

    Этот метод применяют в пром-сти для получения О. с разл. орг. радикалами у атома Si, Можно использовать также литий-, цинк- и натрийорг. соединения. 2) Прямой синтез (наиб, экономичный из пром, методов)-взаимод. алкил-и арилгалогенидов с кремнием при 250-350 или 500-600 С соотв. в присут. Си или с использованием кремнемедного сплава в реакторах с мех. перемешиванием в псевдоожиженном слое, в вибрац. режиме или под давлением  [c.405]

    Реактив Гриньяра RMgX получается при реакции металлического магния с соответствующими органическими галогенидами (разд. 4.18). Этими галогенидами могут быть алкил- (первичные, вторичные, третичные), аллил-, аралкил- (например, бензил) или арилгалогениды (фенил или замещенный фенил). Галогенами могут быть С1, Вг или I. (При синтезе арилмагнийхлори-дов реакцию проводят в циклическом эфире — тетрагидрофуране вместо ди-этилового эфира.) [c.493]

    Синтез Вильямсона представляет нуклеофильное замещение иона галогена алкоголят- или фенолят-ионом он аналогичен синтезу спиртов из алкилгалогенидов при действии водного раствора щелочи (разд. 15.10). Арилгалогениды нельзя использовать вследствие их низкой реакционной способности по отношению к нуклеофильному замещению, если в кольце не присутствуют ЫОа-группы (или другие сильные электроноакцепторные группы)-в орто- или nupu-положении к галогену (разд. 26.10). [c.537]

    При синтезе алкилариловых эфиров также следует рассмотреть два возможных пути в данном случае один путь можно исключить сразу. н-Про-пилфениловый эфир, например, можно получить только из алкилгалогенида и фенолята натрия, поскольку арилгалогенид не реагирует с алкоголятами [c.538]

    Преимущества синтеза арилгалогенидов из солей диазония будут подробно обсуждены в разд. 26.5. Арилфториды и арилиодиды обычно нельзя получить прямым галогенированием. Арилхлориды и арилбромиды можно синтезировать прямым галогенированием, но в тех случаях, когда образуется смесь орто- и /гарй-изомеров, ее бывает трудно разделить на индивидуальные вещества из-за близости их температур кипения. Сырьем для получения солей диазония являются в конечном счете нитросоединения, которые обычно можно получить в чистом виде. [c.739]

    Реакции неактивированных арилгалогенидов с сильными основаниями или при высоких температурах, протекающие через образование дегидробензола, находят все более широкое применение в синтезе. Процесс фирмы Оо у , который уже много лет используется для производства фенола (разд. 25.4), оказался, как выяснилось, процессом, который был метко назван Дж. Баннетом (стр. 799) крупнотоннажной химией дегидробензола . [c.785]

    Анализ результатов, полученных прн многочисленных попытках синтеза несимметричных биарилов, приводит к заключению, что наилучшие выходы достигаются, когда один из арилгалогенидов активирован, а другой относительно малореакционноспособен. Хорошо известно, что при реакциях Ульмана особенно трудно воспроизвести выходы. Главная проблема связана, по-видимому, с эффективностью перемешивания в двухфазных реакциях. 2-Мето-кси-2-нитробифенил, который используется как промежуточный продукт для приготовления о-мстилдибензофуранийборофторнда (реагента Меервейна) [177], получают из о-бромнитробензола и иод-анизола с выходом 58% (уравнение 224) [178]. При использовании медной мешалки, которая охватывала весь объем реакционного сосуда [179], в этой реакции были достигнуты выходы до 80%. [c.426]

    Второй тип реакции включает формальное присоединение арил-карбаниона (обычно гриньяровского или литийорганического реагента) к арину (см. гл. 2.8) [116а]. Когда дегидробензол получают из арилгалогенида с использованием фениллития, подавить полностью присоединение последнего к арилу путем введения в реакцию других нуклеофилов не удается. Первоначальный продукт, 2-литийбифенил, можно перехватить электрофилами (уравнения 235 и 236). Реакцию с ариллитием можно использовать для синтезов, например в синтезе трифенилена (уравнение 237), [c.429]

    Образование биарилов при взаимодействии арилгалогенидов с Ni( 0D)2 или (Ph3P)2Ni в ДМФ представляет собой улучшенный вариант реакции Ульмана [94, 437]. Кроме того, эта реакция особенно удобна для сочетания 1,(о-бис(иодарил)алканов и вследствие этого находит применение в синтезе некоторых природных соединений (схемы 378, 379) [438]. Наряду с сочетанием арильных групп Ni( 0D)2 может промотировать сочетание алкильных, аллильных, бензильных и винильных групп (схемы 380, 381) [439, 440]. [c.352]

    Весьма реакционноспособный комплекс Уилкинсона [трис(трифенилфосфин) родийхлорид] является активным декарбонили-рующим агентом, способным превращать ацилхлориды в галоген-органические соедпнения, а альдегиды — в углеводороды (схема 501). Образующийся прп этом карбонильный комплекс родия (174) весьма стабилен. В условиях этой реакции некоторые органические галогениды распадаются на олефин и галогеноводород. Декарбонилирование обычно используют только для получения арилгалогенидов из ароилгалогенидов [252]. На реакции декар-бонилирования основан удобный метод синтеза дейтерированных алканов из дейтерированных альдегидов (схема 501) [533.  [c.378]

    Диалкил- или диарилдихлорсиланы получают прежде всего непосредственным синтезом из кремния и алкил- или арилгалогенидов при 250—400°С в присутствии меди (Мюллер, Рохов, 1945 г.)  [c.544]

    Второй подход связан с использованием элегантной стратегии синтеза орто-гидроксиарил-1,3-дикетона, необходимого для синтеза хромонового цикла, из изоксазола как эквивалента 1,3-дикетонового фрагмента (разд. 22.8). Изоксазол образуется в результате реакции циклоприсоединения арилнитрилоксида к три- -бутилстаннилацетилену (разд. 22.13.1.2) получающееся при этом оловоорганическое соединение используют в реакции сочетания с арилгалогенидом, а затем связь N—0 изоксазольного цикла подвергают гидрогенолизу (разд. 22.8) [115]. [c.245]


Смотреть страницы где упоминается термин Арилгалогениды синтез: [c.36]    [c.28]    [c.251]    [c.602]    [c.251]    [c.602]    [c.86]    [c.661]    [c.587]    [c.237]    [c.91]    [c.610]    [c.381]   
Органическая химия (1974) -- [ c.331 , c.340 , c.372 , c.737 , c.739 , c.783 , c.784 ]




ПОИСК





Смотрите так же термины и статьи:

Арилгалогениды



© 2025 chem21.info Реклама на сайте