Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение молибдена в сталях и сплавах

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    ЛЕГИРОВАНИЕ (нем. legieren — сплавлять, от лат. ligo — связываю, соединяю) — введение в металлы и сплавы легирующих материалов для получения сплавов заданного хим. состава и структуры с требуемыми физ., хим. и мех. св-вами. Применялось еще в глубокой древности, в России — с 30-х гг. 19 в. Л. осуществляют введением легирующих материалов (в виде металлов и металлоидов в свободном состоянии, в виде различных сплавов, напр, ферросплавов, или в газообразном состоянии) в шихту или в жидкий (при выплавке) сплав. Иногда добавки легирующих материалов вводят в ковш. В закристаллизовавшемся сплаве легирующие материалы распределяются в твердом растворе и др. фазах структуры, изменяя его прочность, вязкость и пластичность, повышая износостойкость, увеличивая глубину прокаливаемости и др. технологические св-ва. Л. существенно влияет па положение критических точек стали. Никель, марганец, медь и азот расширяют по температурной шкале область существования аустенита, причем при известных соотношениях содержания углерода и этих элементов аустенит существует в области т-р от комнатной и ниже до т-ры плавления. Хром, кремний, вольфра.м и др. элементы сужают эту область и при определенных концентрациях углерода и легирующего элемента расширяют область с>тцествоваиия альфа-железа (см. Железо) до т-р плавления. При некоторых концентрациях углерода и легирующего материала сталь даже после медленного охлаждения имеет структуру закалки. Легирующие материалы, не образующие карбидов (напр., никель, кремний и медь), находятся в твердых растворах, карбидообразующие материалы (хром, марганец, молибден, вольфрам и др.) частично растворяются в железе, однако в основном входят в состав карбидной фазы и при больших концентрациях сами образуют карбиды (напр.. [c.681]


    Главными представителями сплавов железа являются чугуны и стали. При анализе простых чугунов и сталей обычно определяют содержание в них углерода, кремния, серы, фосфора и марганца. Для придания сплавам железа определенных технических свойств в них вводят легирующие компоненты, из которых чаще всего приходится определять никель и хром (также ванадий, медь, титан, молибден и др.). [c.454]

    Применяют в качестве редокс-индикатора для фотометрического определения перрената бора в кремнии, сталях, сплавах, водах, в оксиде свинца, фосфорнокальциевом стекле, боросиликатных пленках, вольфраме, молибдене, никеле, ниобии и их сплавах урана в отходах производства. Определяют бор без отделения основы и примесей. Мешают КеО ", С10 ", Та(У), Т1(1И) и 1п. [c.173]

    С другой стороны, примерами пассивных металлов по определению 1 могут служить хром, никель, молибден, титан, цирконий, нержавеющие стали, сплавы 70 % N1 — 30 % Си (монель) и др. [c.71]

    Фотометрические методы используются для определения небольших количеств многих редких элементов бериллия в вольфраме и сплавах галлия, индия, таллия, редкоземельных элементов и германия в разнообразных объектах титана в горных породах, рудах, сплавах, в металлических вольфраме и цирконии тория в горных породах, цирконе и других материалах циркония в различных материалах ванадия в рудах, минералах, сплавах, сталях, металлическом цирконии ниобия в горных породах и минералах тантала в металлических цирконии, гафнии, ниобии висмута в металлическом молибдене молибдена в сплавах на основе титана, сталях и минеральном сырье селена и теллура в рудах и минералах рения в молибденсодержащих продуктах и в сплавах с танталом или вольфрамом. [c.22]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Применяют для фотометрического определения А1 без отделения в медных сплавах, сталях, ферротитане, ферровольфраме, молибдене и в сплавах вольфрама с молибде- [c.227]

    Различные варианты фотометрического определения молибдена при помощи тиогликолевой кислоты [66, 598, 1155, 1172, 1254, 1534, 1538, 1540] дают удовлетворительные результаты. При выполнении определения необходимо контролировать кислотность раствора. Молибден успешно определяли в сталях [66, 1155, 1254, 1540], техническом пероксиде урана [598], магнитных сплавах [1534], сплавах титана [1172], жаростойких сплавах [1540]. [c.238]

    Как правило, колориметрическому определению бора мешают присутствие окислителей (нитраты, хроматы, перекись водорода), разрушающих красители, фтор-ион, образующий комплексное соединение с бором [91], а также некоторые элементы, такие, как железо, никель, марганец, мель, хром, кобальт, алюминий, ванадий, титан, молибден, цирконий, олово, мышьяк. Влияние окислителей устраняют восстановлением их гидразином, фтор-ион связывают добавлением двуокиси кремния. В литературе имеется обзор методов определения бора с применением дистилляции, ионного обмена, электролиза с ртутным катодом и определения в видимой и УФ-обла-сти спектра с применением флуорометрии, спектроскопии, полярографии и амперометрического титрования в урановых материалах, полупроводниках, сталях и цвет ных сплавах [107, 108]. Подробно методы отделения ме- тающих примесей изложены в п. 2 гл. I. [c.49]

    Метиловый фиолетовый. Этот краситель, также принадлежащий к группе трифенилметановых, образует с Sb lg ионный ассоциат, экстрагирующийся органическими растворителями. Чувствительность экстракционно-фотометрического определения Sb с его применением ниже, чем с применением бриллиантового зеленого и кристаллического фиолетового при использовании бензола е = 5,4-10 при Яшах = 608 нм (2 Л/HG1) для H lg е = = 8,1-10, Ятах = 590 нм (4 М НС1) [327]. Несмотря на указанный недостаток, метиловый фиолетовый довольно часто используется для определения Sb в различных материалах. С его применением определяют Sb в алюминии [254], жаропрочных сплавах [497], железе, чугуне, сталях, железных рудах и ферросплавах [84, 444, 975, 1406], кадмии [456], меди и ее сплавах [93, 341, 359, 489, 490], молибдене и ферромолибдене [401, 645, 655], никеле и его сплавах [502], оловянных рудах и продуктах их переработки [596], припоях [277], рении [645], свинце [1105, 1106], таллии [320], титане [498], хроме и его сплавах [502, 545], цинке, цинковых сплавах, злектролитах и растворах цинкового производства [332, 456, 700], тонких напыленных слоях стибнита [63]. [c.49]


    Некоторые стали, как и индивидуальные металлы, приобретают способность пассивироваться при достижении определенной критической концентрации воды [598, 599], при этом условии может быть получена достаточная для пассивации поверхности степень покрытия пассивирующими кислородсодержащими частицами. Если же органический растворитель в присутствии воды подвергается гидролизу с образованием кислоты, то такие смеси агрессивны не только к углеродистым, но и к нержавеющим сталям, особенно при повышенных температурах [593, 396]. Молибден увеличивает коррозионную стойкость сталей и сплавов [596, 597, 595, 601, 602]. [c.122]

    В частности, для нержавеющих сталей, содержащих молибден, большое значение приобретает выпадение сигма-фазы. Эта фаза содержит значительно больше хрома и молибдена, чем твердый раствор, и при ее выпадении участки, окружающие ее, тоже сильно обедняются хромом. Поэтому появление в структуре сплава сигма-фазы делает его в определенных средах склонным к межкристаллитной коррозии. По мнению Варена [2], сетка выделений сигма-фазы приводит к межкристаллитной коррозии только в азотной кислоте, в то время как сетка карбидов вызывает сильную межкристаллитную коррозию и в других кислотах. [c.242]

    В процессе изготовления аппаратуры и оборудования из коррозионностойких сталей, вследс -вие неправильной термической обработки или при сварке могут возникнуть условия, вызывающие межкристаллитную коррозию. По современным представлениям преимущественное разрушение границ зерен обусловлено электрохимической неоднородностью поверхности, возникающей в определенном для данного сплава интервале температур в результате структурных превращений. Например, при нагреве хромоникелевых сталей при 600—800 °С происходит выделение из твердого раствора сложных карбидов, содержащих хром, железо и никель. Эти карбиды выпадают преимущественно но границам зереи, что приводит к обеднению отдельных участков сплава хромом. Наиболее сильное обеднение наблюдается в зоне, непосредственно прилегающей к границе рерна. Имеются и другие факторы, способствующие межкристаллитной коррозии. Например, для коррозионностойких сталей, содержащих молибден, большое значение приобретает выделение о-фазы, также способствующей обеднению хромом прилегающих к границам участков. Перераспределение хрома в коррозионностойких сталях возможно и в результате выпадения высокохромистого феррита — продукта распада аустенита, что вызывает межкристаллитную коррозию, например, сварных швов. Существует мнение, что на склонность к межкристаллитной коррозии влияют также и внутренние напряжения. [c.55]

    Из многочисленных областей применения дитизонового метода можно указать работы по определению свинца в пищевых продуктах [33, 39—41], органических веществах [2, 30, 31], биологическом материале [5, 6, 29, 42[, растительных веществах [43], нефтепродуктах [44], в воде и сточных водах [45—47], воздухе [48—50], щелочах [51], минералах [3, 10, 52], монаците [53], теллуровой кислоте [54], боре ]35], индии ]12, 14], таллии [12], ванадии [55], ниобии и его сплавах ]55, 56], олове [13], серебре [11], кадмии [57], хроме и его сплавах ]58], молибдене и вольфраме [59], чугуне и стали ]4, [c.342]

    К металлам, пассивным по первому определению, относятся хром, никель, молибден, титан, цирконий, нержавеющие стали, монель-металл и некоторые другие металлы и сплавы, пассивные на воздухе. В эту же группу входят металлы, которые становятся пассивными в пассивирующих растворах, например железо в растворах хроматов. Металлы и сплавы этой категории обладают значительной анодной поляризуемостью. Отчетливо выраженная анодная поляризация понижает наблюдаемые скорости реакции и, таким образом, металлы, пассивные по первому определению, обычно попадают в категорию металлов, пассивных также и по второму определению. Потенциалы коррозии металлов, пассивных по первому определению, стремятся достигнуть потенциала катодных участков (например, потенциала кислородного электрода). [c.62]

    Было найдено, что при 400—900° количественно реагируют с однохпористой серой окислы меди, железа, алюминия, магния, сернокислый барий [6], окислы циркония, бора [7], циркония, хрома и титана Выполнялись определения кислорода в сплавах никеля с вольфрамом и молибденом, в стали и металлических хроме и алюминии при содержании кислорода [c.155]

    Полярографические методы с применением ртутного капающего электрода широко применяются для определения Sb в различных промышленных и природных материалах, в том числе в железе, чугуне и сталях [503, 823, 1037, 1216, 1264, 1309, 1478, 1574], полупроводниковых материалах [123, 343, 344, 451, 680, 720, 721, 1071], свинце и его сплавах [130, 142, 144, 148, 154, 220, 230, 246], рудах и концентратах [204, 1036, 1635], цицке и его солях [67, 416, 418, 420], цинковых электролитах [417], титане и его соединениях [822, 823, 1174, 1548], меди [1672], олове [1201], молибдене [644], кадмии [1584], цирконии и его сплавах [823], типографских сплавах [763, 820], ферромарганце [1352], манга- [c.64]

    Испытания сталей с различным содержанием хрома,проведенные на станциях Кюр-Бич, Ниагарского водопада и Нью-Йорка, показали, что коррозия, определенная по потере веса, быстро уменьшается с увеличением содержания хрома и достигает минимального значения при 12,5% хрома однако для получения действительно нержавеющей стали содержание хрома должно быть повышено до 18%. Обследование нержавеющей стали, которая эксплуатировалась в строительных конструкциях в Нью-Йорке и других местах в течение 6—7 лет, показало, что большинство стальных конструкций находится в хорошем состоянии, хотя иногда наблюдалось образование темного налета и в редких случаях образование язвенных поражений. В морской атмосфере сплавы, содержащие молибден, подвергаются меньшей коррозии, чем остальные. [c.466]

    Метод дает воздюжность быстро и непосредственно анализировать твердые и жидкие вещества без их разрушения со сравнительно высокой точностью (порядка 1—5 отн. %). Один из недостатков метода — относительно пизкаячувствительность. При-люняют его главным образом для экспрессного контроля иро-дуки,ии различных производств. Чаще всего в анализах используют спектро.метр с кристаллом LiF. Метод был применен для определения марганца и других элементов в горных породах и морских осадках [1062, 1289, 1459, 1.534[, шлаках и угольной золе [423, 1455], терефталевой кислоте [813[, цеолитах [1032], рудах [2611, окисных включениях в сталях [9531, сплавах [711, 8371, бериллии [8811, сталях [1228], чугуне [7121, бензине [1095], сплавах марганца с РЗЭ [11271, силикатах [11361, молибдене и его соединениях [1442]. [c.115]

    Для ванадия известно несколько степеней окисления. Для титрования ванадия(II) в модельных растворах и искусственных смесях предложено использовать электрогенерированное железо(III) с биамперометрической индикацией к. т. т. После растворения пробы амальгамой цинка восстанавливают ванадий(У) и (IV) до V" и титруют его железом(1П) на фоне серной кислоты при pH > 1 [474]. Разработаны методики определения и V в смесях ионов марганца, хрома и ванадия [475], сталях, содержащих молибден и вольфрам [476, 477], и в сплавах [478, 480—482]. Для индикации к. т. т. предложены потенциометрический и биамперометрический методы. Электрогенерированные титранты из металлоактивных электродов — металлического ванадия, олова, меди и хрома —применены для определения ванадия в инструментальных сталях, сплавах, хромитовых рудах [483, 484—490, 497], латунях, бронзах [494— 497], металлическом цинке [497—499]. [c.75]

    Рентгенофлуоресцентный метод применяют для определения вольфрама в сплавах на основе титана [238], в цирконии и его сплавах [269], железе, титане и молибдене [159, 234, 235], сплавах W—Мо, W—Fe [851], хромо-вольфрамовых сталях [469], шеелитах и вольфрамнтах [578], рудах и продуктах их обогащения, содержащих Си, Мо, S, Р [307], сухих продуктах обогащения [308]. [c.162]

    На реакции восстановления шестивалентного молибдена двухвалентным хромом основаны практически важные потенциометрические, а также амперометрические методы определения молибдена в молибдените [295], молибденововольфрамовых рудных концентратах [105], молибденововольфрамовых сплавах [105, 106], сталях [135, 243, 512, 523, 1414], ферромолибдене [58, 135, 243] и других материалах [197]. [c.200]

    Диантипирилметан взаимодействует с титано.м (IV) в солянокислых растворах с образованием окрашенных соединений и применяется для его фотометрического определения в различных сплавах (см. стр. 141). Этот реагент принадлежит к числу наиболее селективных и выдокочувствительных реагентов на титан. Он применяется для определения титана в ванадии и хлорокиси ванадия, в ниобии, в молибдене, алюминиевых и магниевых сплавах, сталях, жаропрочных сплавах на никелевой и железной основах. [c.135]

    Удалось установить [74] определенную связь между составом нленки и ее защитными свойствами. Указанные выше стали подвергали коррозионным испытаниям в 10%-ном растворе РеВгд при 25° С в течение 150 час. Соответствующие данные о составе пассивных пленок после испытаний и скорости коррозии приведены на рис. 25. Можно отметить интересные изменения в составе пленки примерно 25% 31 в пассивной пленке в процессе коррозионных испытаний заменяются Мо. В результате создается поверхность, обладающая высокими защитными свойствами. Наибольшее повышение содержания кремния в пленке и наибольшая скорость обогащения пленок молибденом в процессе коррозии наблюдаются у сплавов, содержащих 1—2% 31, и это количество кремния будет самым эффективным. Дальнейшее повышение содержания 31 оказывает значительно меньшее влияние на улучшение коррозионной стойкости сплава, что подтверждается коррозионными данными. Состав нленки для сплава с 2% 31 после [c.40]

    При определении влияния на склонность к межкристаллитной коррозии более высокого содержания хрома и никеля, с которым приходится встречаться у высоколегированных сталей, необходимо принимать во внимание общий состав стали и режим термообработки. Соотношение отдельных элементов сплава, влияние хрома и повышение содержания никеля можно оценить по данным, приведенным в гл. 4.1. Вообще никель повышает склонность к межкристаллитной коррозии. Уже относительно небольшое повышение содержания никеля в высоколегированных сталях (например, с 28 до 35% [70]) существенно ускоряет, при критических температурах, выпадение карбидов хрома типа МеззСв по границам зерен, а при температурах вплоть до 980° С — также и карбидов МввС, содержащих молибден, ниобий, железо и хром. Повышенное содержание никеля также усиливает растворение карбидов стабилизирующих элементов, которое происходит уже при обычных температурах растворяющего отжига (1040—1100° С). Оптимальная термообработка для устранения склонности к межкристаллитной коррозии сталей, высоколегированных никелем, должна проводиться выше самых высоких температур образования карбидов МевС, но как можно ниже области температур обыкновенного растворяющего отжига, т. е. между 980 и 1020° С. Стабилизация этих сталей для устранения склонности к межкристаллитной коррозии требует не только повышения степени стабилизации (см. гл. 6.2.1), но одновременно и существенного снижения содержания углерода — ниже 0,04%, а в некоторых случаях ниже 0,015% (см. гл. 4.1). [c.157]

    После первого цикла на поверхности сплава возникало определенное число устойчиво работающих питтингов (Л 1 = 40). Казалось, что во втором цикле при включении анодного тока должны в первую очередь развиваться уже имеющиеся питтинги. Но это не так. Сразу же после выключения тока они запассивировались и перестали функционировать. Во втором цикле возникли совершенно новые питтинги (Л г = 84), а в третьем их стало уже 130. Активировать вновь ранее работавшие питтинги оказалось гораздо труднее, чем создать новые. Потенциал питтингообразования выявляется по первому скачку потенциала в отрицательную сторону на кривой заряжения. Эти потенциалы довольно хорошо совпадают с потенциалами питтингообразования, определенными потен-циостатическим методом (табл. 49). По мере перехода к более легированным сплавам, в особенности молибденом и кремнием, потенциалы [c.289]

    Бром в органических растворителях обычно применяют для определения оксидов в стали, алюминии, хроме, бериллии, в сплавах циркония, олова и др. (табл. 5.47). Для растворения урана и циркония рекомендуется использовать растворы брома в этилацетате [5.1843]. д В смесях метилацетата, бутнлацетата или ацетонитрила с бромом (10 1) при 25 °С растворяются А), Сг, Со, Си, Ре, Мп, N1, N5, 5п, Т1, V, Р и 5, практически нерастворимы РЬ, 51 и Л Молибден малорастворим в ьтих смесях. [c.263]

    На реакции восстановления шестивалентного молибдена двух валентным хромом основаны практически важные потенциометрические и амперометрические методы определения молибдена в молибдените, молибденовольфрамовых рудных концентратах, молибденово-вольфрамовых сплавах, сталях. [c.100]

    Многие материалы могут быть исследованы этим методом медь, сплавы на основе Си—N1, бронза, нержавеющие стали, цирконий, циркалой, вольфрам, молибден, свинец, бериллий и титан. Каждый вид дефектов может быть определен в соответствии с диаграммой, которая представлена на рис. 10.57. Обычно калибровка инструмента на трубе, имеющей калибровочные дефекты, затруднена. Перегородки, поддерживающие конденсорные трубки, могут маскировать коррозию, имеющую место вблизи этих перегородок. [c.620]

    Этим способом определялось содержание кислорода в стали и ряде других металлов. Аналогичный метод применялся также для определения водорода в стали, титане, молибдене и их сплавах. Точность анализа при содержаниях водорода в стали от 2 до 15 сж /100 г составляла ss20%. [c.202]

    Большое внимание было уделено определению отепени воздействия пылегазовой смеси, содержащей H I, СЬ, SO2, СО2, СО, на коррозию углеродистой стали, хромистых и нержавеющих сталей с различным содержанием шкеля и ряда сплавов на его основе, легированных алюминием, кремнием, молибденом, вольфрамом. [c.47]

    Универсальный коррозиметр Эксперт-004 применялся для определения коррозионных характеристик нержавеющих и углеродистых сталей в растворах кислот, средах кондитерского производства [6], защитного действия, пористости покрытий сплавами никеля с вольфрамом, молибденом и бором [7], конверсионных покрытий на цинке и алюминии, в том числе анодированном [8], для изучения эффективности составов для травления стали и алюминия [9], ингибиторов коррозии, определения протекторного действия покрытий по отношению к стали и алюминию в условиях нефтедобычи на буровых платформах. [c.12]


Смотреть страницы где упоминается термин Определение молибдена в сталях и сплавах: [c.220]    [c.264]    [c.690]    [c.445]    [c.351]   
Смотреть главы в:

Практическое руководство -> Определение молибдена в сталях и сплавах

Практическое руководство по колориметрическим и спектрофотометрическим методам анализа -> Определение молибдена в сталях и сплавах




ПОИСК





Смотрите так же термины и статьи:

Молибден в сталях

Молибден сплавы

Определение молибдена в сплавах

Определение молибденита

Фотоколориметрическое определение элементов молибдена в сталях и сплавах

Фотометрическое определение элементов молибдена в сталях и сплавах



© 2025 chem21.info Реклама на сайте