Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение восстановлением до аммиака

    Определение восстановлением нитрат-ионов до аммиака [c.144]

    Определение восстановлением до аммиака [c.184]

    ОПРЕДЕЛЕНИЕ ВОССТАНОВЛЕНИЕМ ДО АММИАКА [c.73]

    Метод основан на восстановлении нитратов сплавом Деварда, отгонке и количественном определении образующегося аммиака. [c.290]

    Ход определения. Восстановление лучше всего проводить в приборе, состоящем целиком из стекла, например в стеклянной промывалке с притертыми частями. Приготовляют солянокислый или сернокислый анализируемый раствор, содержащий железо, и удаляют элементы сероводородной группы, если они присутствовали. Кипятят для удаления сероводорода и прибавляют раствор перманганата калия до устойчивой розовой окраски. Затем приливают аммиак, пока образующийся осадок не будет при перемешивании растворяться лишь с трудом, но раствор при этом все же должен оставаться прозрачным. Раствор разбавляют до 50—100 мл водой, пропускают через него 2—3 мин. сернистый газ и затем, продолжая пропускание газа, постепенно нагревают до кипения. Когда раствор обесцветится (15—30 мин.), прекращают ток сернистого газа, пропускают через раствор промытый углекислый газ и сильно кипятят до удаления сернистого газа (15—30 мин.), контролируя это пропусканием выходящего газа в течение 30 сек. через разбавленный раствор серной кислоты, содержащий 2—3 капли 0,1 н. раствора перманганата калия. Затем ток углекислого газа усиливают, раствор охлаждают, прибавляют еще кислоты и титруют, как указано ниже (стр. 407). [c.406]


    Катализатор для синтеза аммиака выпускают в виде гранул двух марок СА-1 (окислительный) и СА-1В (восстановительный). Первый подвергают восстановлению при определенном режиме в колонне синтеза аммиака. [c.60]

    Образование легколетучего аммиака используется во многих методах определения аммонийных солей в удобрениях, определения нитратов после их восстановления до ЫНз, определения белкового азота, определения азота в металлах. [c.112]

    Если в растворе присутствуют ионы ЫОз, цинк осаждается только после того, как закончится восстановление ионов N03 до аммиака. Электролиз цианистых растворов применяют для определения серебра, кадмия и некоторых других элементов. На аноде разряжаются, кроме гидроксильных ионов, также анионы СЫ- с выделением свободного дициана (СЫ)г, который является ядовитым газом. Чтобы устранить его выделение, необходимо прибавить к раствору немного свободной щелочи, тогда происходит реакция  [c.230]

    В другом методе вместо сульфита используют солянокислый гид-роксиламин [760]. Предложено также маскировать Ре (II) а, а-дипиридилом после восстановления Ре (III) сернистой кислотой [710]. Осаждение А1(0Н)з после восстановления Ре (III) гидроксиламином дает несколько худшие результаты [736]. При определении в медных сплавах алюминий осаждают аммиаком из растворов, содержащих аскорбиновую кислоту и комплексон III, которые удерживают в растворе Ре 5п и РЬ [261]. Другие авторы маскируют железо и никель с помощью цианидов [637, 1246]. [c.44]

    Восстановление хинолинов и изохинолинов литием в жидком аммиаке в определенных условиях приводит к получению 1,4-дигидрохинолинов [42] и [c.174]

    Ход определения. Восстановление лучше всего проводить в приборе, состоящем целиком из стекла, например в стеклянной промывалке с притертыми частями. Приготовляют солянокислый или сернокислый анализируемый раствор, содержащий железо, и удаляют элементы сероводородной группы, если они присутствовали. Кипятят для удаления сероводорода и прибавляют раствор пермангалата калия до устойчивой розовой окраски. Затем приливают аммиак, пока образующийся осадок не будет при перемешивании растворяться лишь с трудом, но раствор при этом все же должен оставаться прозрачным. Раствор разбавляют до 50—100 жл водой, пропускают через него 2—3 мин сернистый ангидрид и затем, продолжая пропускание газа, постеденно нагревают до кипения. Когда раствор [c.444]

    ГОСТ 5605-50. Предприятия промышленные. Метод определения содержания паров сероуглерода в воздухе, 3642 ГОСТ 5606-50. Предприятия промышленные. Метод определения содержания аммиака в воздухе, 3643 ГОСТ 5609-50. Предприятия промышленные. Метод определения содержания нетоксичной пыли в воздухе, 3644 ГОСТ 5610-50. Предприятия промышленные. Метод определения содержания сероводорода в воздухе, 3645 ГОСТ 5612-50. Предприятия промышленные. Метод определения содержания окиси углерода в воздухе, 3646 ГОСТ 5637-51. Олово, Методы химичес] )го анализа. Взамен ГОСТ 860-41 в части методов химического анализа. о647 ГОСТ 6012-51. Никель, Метод спектрального анализа, 3648 ГОСТ 6055-51. Вода, Методы химического анализа, Единица измерения жесткости, 3649 Гохштейн Я. П. О восстановлении кислородосодержащих анионов [Сг04 , комплексных ионов молибдена] на капельном ртутном катоде, Тр, Комис, по аналит. химии (АН СССР, Отд,-ние хим, наук), 1949, 2, с. 54— 64. 3650 Гранберг И. А., Сухенко К. А., Развязкина К. А. [и др.]. Спектральный анализ магнитных сплавов. Зав. лаб,, 1951, 17, № 9, с, 1093—1096, 3651 Грановский И. В. и Дружинин Ф. Г. Фторид ный метод определения окиси кальция в мартеновских и доменных шлаках. Зав.лаб., [c.148]


    Метод гомогенного восстановления оксидов азота аммиаком для очистки газов от оксидов азота в производстве химических продуктоа из углеводородов нефти п газа запатентован во Фран-плш. Он основан на селективном восстановлснии оксидов азота аммиаком в газовой фазе при отсутствии катализаторов и строго определенной температуре (920—970°С). [c.67]

    Ему же соответствует кинетика окислительного аммонолиза пропилена, скорость которого в определенных пределах не зависит от парциальных давлений кислорода и аммиака. Два последних кинетических уравнения близки окислительно-восстановительному механизму, когда окисление восстановленных активных центров катализатора протекает быстро и не лимитирует общей скорости процесса. В этом случае наблюдается первый порядок окисления и окислительного аммонолиза по пропилену (г = кРСзНз)- [c.414]

    Разработаны схемы анализа группового состава сернистых соединений всех нефтепродуктов, включающие колориметрические методы и амперометрическое прямое титрование [29]. Колориметрически определяют содержание сероводорода, меркаптанов и дисульфидов. Метод основан на экстракции сероводорода кислым раствором хлорной меди, а меркаптанов — аммиачным раствором углекислой меди с последующей обработкой вытяжки ксрцентрированным водным раствором аммиака и сульфита натрия (для нредотвращения каталитического влияния ионов меди). Вытяжки фильтруют и колориметри-руют при длине волны 625 нм. Содержание дисульфидов (после их восстановления) определяют по увеличению количества меркаптанов. Сходимость колориметрических определений достаточно высока. [c.92]

    Отгонка аммиака используется в широко известном методе определения азота в органических соединениях по Кьельдалю. В простейшем варианте этого метода пробу обрабатывают при нагревании концентрированной серной кислотой в присутствии солей ртути (катализатор), в результате чего органические соединения окисляются до СО2 и Н2О, а азот переходит в ЫН4Н504. После охлаждения к остатку добавляют раствор щелочи и отгоняют ЫНз в отмеренный объем титрованного раствора кислоты, а затем определяют избыток кислоты, не вошедшей в реакцию с аммиаком, и рассчитывают массу азота в пробе по формуле обратного титрования. Методом Кьельдаля можно определять азот в аминах, аминокислотах, алкалоидах и многих других азотсодержащих соединениях. Некоторые соединения можно проанализировать по методу Кьельдаля только после предварительного разложения или восстановления хлоридом олова (И) или цинковой пылью (азотсоединения, производные гидразина и т. д.) [c.215]

    Метод основан иа титровании индия (111) при pH 1,0 раствором динатриевой соли этилендиаминтетрауксусной кислоты (комплексон III). Точку эквивалентности устанавливают по исчезновению диффузионного тока восстановления 1п Ч-иона на ртутном капельном электроде при потенциале от —0,7 до —0,8 в относительно насыщенного каломельного электрода. Определению не мешают многие элементы, с которыми обычно приходится встречаться при анализе индийсодержащих продуктов, а именно 2п, Мп, Сс1, Со, А1. Титрованию не мешают также значительные количества Ре++ ( 10 мг). Железо (111) восстанавливают до Ре++. Влияние олова (-<5 мг) и сурьмы (-<2. мг) устраняют введе-ннем винной кислоты. Определение возможно в присутствии небольших количеств (-<0,5 мг) ионов медн, если их замаскировать тномочевиной, и ионов свинца, а также мышьяка (-<2 мг). Большие количества этих элементов затрудняют установление точки эквивалентности вследствие того, что медь, свинец и мышьяк дают диффузионный ток. Однако эти элементы легко отделяются от индия в ходе анализа мышьяк и свинец удаляются при разложении пробы смесью хлористоводородной и серной кислот и упаривании раствора до появления паров Н2504 медь — при осаждении гидроокиси нндия избытком аммиака. Определению мешает висмут. [c.369]

    Первичные а-аминокислоты реагируют с нингидрином , давая интенсивное фиолетовое окрашивание. Реакция осуществляется в две стадии. Первоначально аминокислота окисляется до низшего альдегида или кетона с выделением аммиака и диоксида углерода. Затем аммиак взаимодействует с продуктом восстановления нингидрина и с непрореагировавшей молекулой нингидрина, образуя фиолетовое соединение. Количественное образование вещества наряду с интенсивностью его окраски делает эту реакцию очень ценной. Она широко используется как для качественного определения аминокислот (например, как опрыскиватель при хроматографии), так и для количественной оценки с помощью спектрофотоыетрических методов. Метод обладает большой чувствительностью благодаря высокой [c.295]


    Чистоту препарата определяют по отсутствию мышьяка и других примесей выше норм межреспубликанских технических условий на хлориды, сульфаты и тяжелые металлы. Количественное определение основано ца восстановлении тетурама сульфитом натрия в присутствии аммиака и титровании образующегося продукта сульфатом никеля в присутствии индикатора диметилглиоксимовой бумаги до розового пятна на ней  [c.193]

    Большая часть азота биосферы существует в виде химически очень инертного N2, на долю которого приходится до 80% всех молекул воздуха. Фиксация азота происходит в основном либо под действием молний (приводящих к образованию окислов азота, из которых затем получаются нитрат и нитрит), либо в результате жизнедеятельности бактерий [1]. Определенный вклад в фиксацию азота вносит и человек, производящий химические удобрения. Взаимопревращения между нитратом и нитритом, с одной стороны, и аммиаком и органическими азотистыми соединениями — с другой, относятся к активным биологическим процессам. Некоторые из таких реакций уже обсуждались в Гл. 10 Например, мы рассмотрели окисление бактерия.ми ЫНз в N0 2 и N03 (гл. 10, разд. Е, 1) и восстановление НОз в N02 [уравнение (10-32)]. Для многих бактерий и, высших растений такое восстанов- [c.81]

    Расход природного газа на восстановление оксидов азота в выхлопном 1зе до содержания меиее 0,1% N0 невелик. Фактический расход определятся наличием в выхлопном газе кислорода [до 2,5% (об.)]. С целью ум5 нь-ения расхода СН4 и снижения температуры восстановления в качестве вое-ановителя предложено использовать аммиак, который при определенных ус-)внях селективно взаимодействует с оксидами азота и не реагирует с кис-)родом. Восстановление оксидов азота проходит в основном до молекуляр-)го азота [c.61]

    Восстановительную М. применяют значительно реже, В качестве восстановителей используют гл. обр. водород, щелочные металлы, углерод, аммиак, металлоорг. соединения, При нагр, анализируемых соед в токе водорода нек-рые элементы (напр., С , Аз, Hg, 2п) выделяются в своб. виде. Разработаны способы дистилляции (отгонки) током водорода 2п, Сс1, Т1, 1п, РЬ с послед, осаждением их на охлажденной алюминиевой пов-сти. При определении кислорода в орг, в-вах для восстановительной М. последних используют Н2 или NHз и кислород выделяется в виде Н2О (аналит. форма) иногда образец подвергают пиролизу в токе инертного газа с послед восстановлением образовавшегося СО2 над нагретой графитизир. сажей до СО (аналит форма). [c.89]

    Введение большого избытка аммиака было использовапо прн полярографическом определении несопряженных кетопов [293, 294, 298]. Так как имин восстанавливается легче, чем кетон, то электролиз смеси кетона например, циклогексанона) и амина например, метиламина) при потенциале, когда возможно восстановление только имина, но не кетона, приводит с высоким выходом к замещенному амину (в данном случае к метилцикло-гексиламину) [295]. Показано также [300], что замещенные амины могут быть получены при электролизе смеси разнообразных кетонов и аминов в том числе и вторичных). Этот метод был использован для синтеза аминокислот путем восстановительного а минирования а,-оксокислот [299] [c.342]

    Реже проводят термическое разложение проб с использованием восстановления водородом или аммиаком. На реакции восошовлення очищенным водородом в непрерывном потоке смеси водорода с инертным газом основано определение кислорода в металлах. Этот метод разложения используют и в органическом анализе при определении галогенов, серы и азота. [c.75]

    Аммиак и едкие щелочи [405, 406, 1865] почти не имеют практического значения для отделения тория от р. з. э. При их использовании получается высокая концентрация гидроксильных ионов даже в разбавленных растворах, что приводит к образованию очень нежелательного местного избытка реагента, вызывающего одновременное осаждение и гидроокисей р. з. э. Более пригодным для этой цели оказалось применение окислов и карбонатов некоторых металлов, например, 2пО, СиО, РЬО, 2пСОз и РЬСОз, создающих значительные концентрации гид- роксильных ионов. Использование перечисленных окислов и, карбонатов [410, 412, 763, 778, 864, 1487, 1543], а также закиси Меди и карбоната марганца [1543] обеспечивает количественное отделение тория от р. з. э. Применению любого из этих оса-дителей должно предшествовать отделение циркония и восстановление четырехвалентного церия. Определение обычно заканчивается осаждением тория в виде гидроокиси или оксалата. Однако этот метод не нашел широкого использования вследствие продолжительности и необходимости дополнительного отделения введенных ионов металла. [c.95]

    Гидролиз белков ЗМ /г-толуолсульфокислотой или АМ метан-сульфокислотой [7,8], содержащей 0,2% триптамина, в вакууме при 110°С, в течение 3 суток с хорощим выходом приводит к аминокислотам, включая триптофан, однако углеводы могут мешать. Триптофан можно определять также после щелочного гидролиза, но при этом разрушаются полностью аргинин, цист(е)ин, серин и треонин. Общее содержание амидов, обусловленное наличием аспарагина и глутамина, можно определить после гидролиза 10 М НС1 при 37°С в течение 10 суток и последующего анализа на аммиак с помощью микродиффузионной техники. Раздельное определение аспарагина и глутамина можно провести с помощью предварительной этерификации (метанол-уксусный ангидрид) свободных карбоксильных групп, последующего восстановления (борогидрид лития) образовавшихся сложноэфирных групп и определения аспарагиновой и глутаминовой кислоты после кислотного гидролиза соответственно в виде v-гидрокси-а-аминомасляной кислоты и б-гидрокси-а-аминовалериановой кислоты. Содержание аспарагина и глутамина получают путем вычитания этих величин из содержания аспарагиновой и глутаминовой кислот после полного гидролиза немодифицированного белка. Полный ферментативный гидролиз белков без деструкции аминокислот можно осуществить, используя смешанные конъюгаты Сефарозы с трипсином, химотрипсином, пролидазой и аминопептидазой М [9]  [c.260]

    Флашка и Пюшель [201 ] отмечают возможность последовательного комплексонометрического титрования индия, кадмия и цинка в присутствии железа. К анализируемому раствору прибавляют аскорбиновую кислоту для восстановления трехвалентного железа, аммиак и цианид калия и титруют индий раствором динатриевой соли этилендиаминтетрауксусной кислоты. Затем прибавляют умеренные количества формальдегида для разрушения цианидных комплексов кадмия и цинка и титруют последние элементы раствором динатриевой соли этилендиаминтетрауксусной кислоты. Результаты определений не приведены. [c.101]

    Описан [922] метод определения серы в ртути, основанный на предварительном окислении серы до сульфата при растворении ртути в смеси НС1 и HNO3, последующем восстановлении сульфата до сульфида смесью HJ + Н3РО4, отгонке последнего в виде HjS в раствор аммиака и нефелометрическом определении сульфида в виде PbS при длине волны 370 нм. Метод позволяет определять 10 % серы в ртути при навеске 1,0 г. [c.185]


Смотреть страницы где упоминается термин Определение восстановлением до аммиака: [c.79]    [c.407]    [c.505]    [c.387]    [c.141]    [c.350]    [c.127]    [c.54]    [c.76]    [c.114]    [c.203]    [c.286]    [c.23]    [c.98]    [c.84]   
Смотреть главы в:

Аналитическая химия промышленных сточных вод -> Определение восстановлением до аммиака

Химический анализ производственных сточных вод -> Определение восстановлением до аммиака

Химический анализ производственных сточных вод Издание 4 -> Определение восстановлением до аммиака




ПОИСК





Смотрите так же термины и статьи:

Аммиак определение

Восстановление аммиаком



© 2024 chem21.info Реклама на сайте