Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительное расщепление углеводов

    Уксусная кислота, включенная в цикл трикарбоновых кислот, полностью окисляется в двуокись углерода и воду, а щавелевоуксусная кислота вновь регенерируется. Уксусная кислота образуется при различных процессах метаболизма и включается в ацетил-КоА при участии АТФ (см. выше). Другими источниками образования ацетил-КоА является пировиноградная кислота — важнейший продукт окислительного расщепления углеводов в организме—или высшие жирные кислоты, подвергающиеся р-окислительному расщеплению. [c.90]


    ОКИСЛИТЕЛЬНОЕ РАСЩЕПЛЕНИЕ УГЛЕВОДОВ [c.40]

    Реакция йодной кислоты с быг -диолами имеет важное значение в химии углеводов, которые в своем составе содержат немало таких пар гидроксильных групп. В то время как свободные аль-дозы и кетозы под действием йодной кислоты полностью окисляются до муравьиной кислоты, формальдегида и диоксида углерода, такие производные, как метилгликозиды, подвергаются окислительному расщеплению с образованием продуктов, характерных для циклического строения исходного вещества. Например, метилглюкозид может иметь фуранозную и пиранозную циклические структуры, которые удается различить по продуктам окисления йодной кислотой. Пиранозид должен взаимодействовать с двумя молекулами йодной кислоты с образованием одной молекулы муравьиной кислоты при расщеплении связей, отмеченных на схеме. Фуранозное производное также должно реагировать с двумя молекулами йодной кислоты, давая одну молекулу формальдегида и различные остаточные фрагменты. Муравьиную кислоту можно легко отличить от формальдегида, определив тем самым пяти- и шестичленные структуры исходных сахаров. [c.276]

    Содержание АТФ и креатинфосфата в сердечной мышце ниже, чем в скелетной мускулатуре, а расход АТФ велик. В связи с этим ресинтез АТФ в миокарде должен происходить намного интенсивнее, чем в скелетной мускулатуре. Для сердечной мышцы теплокровных животных и человека основным путем образования богатых энергией фосфорных соединений является путь окислительного фосфорилирования, связанный с поглощением кислорода. Регенерация АТФ в процессе анаэробного расщепления углеводов (гликолиз) в сердце человека практического значения не имеет. Именно поэтому сердечная мышца очень чувствительна к недостатку кислорода. Характерной особенностью обмена веществ в сердечной мышце по сравнению со скелетной является также то, что аэробное окисление веществ неуглеводной природы при работе сердечной мышцы имеет большее значение, чем при сокращении скелетной мышцы. Только 30—35% кислорода, поглощаемого сердцем в норме, расходуется на окисление углеводов и продуктов их превращения. Главным субстратом дыхания в сердечной мышце являются жирные кислоты. Окисление неуглеводных веществ обеспечивает около 65—70% потребности миокарда в энергии. Из свободных жирных кислот в сердечной мышце особенно легко подвергается окислению олеиновая кислота. [c.656]


    Хотя роль аминокислот в организме определяется в первую очередь тем, что они служат строительными блоками для биосинтеза белков, в известных условиях они могут претерпевать и окислительное расщепление. Это возможно в трех случаях. 1) Если аминокислоты, высвобождающиеся при обычном динамическом обновлении белков, не используются для синтеза новых белков, то они подвергаются окислительному расщеплению. 2) Если организм получает с пищей больше аминокислот, чем это ему необходимо для белкового синтеза, то избыточное их количество расщепляется, потому что аминокислоты не откладываются в организме в запас. 3) Бо время голодания или при сахарном диабете, т.е. тогда, когда углеводов нет или когда их утилизация нарушена, в качестве топлива используются белки. Во всех этих ситуациях аминокислоты теряют свои аминогруппы и превращаются в соответствующие а-кетокислоты, которые затем окисляются до СО2 и воды частично это окисление идет через цикл лимонной кислоты. [c.571]

    Из схем видно, что основное отличие механизма гликолиза (анаэробного расщепления сахара с образованием молочной кислоты) от механизма окислительного распада углеводов сводится по существу к следующему при гликолизе пировиноградная кислота восстанавливается и превращается в молочную кислоту — конечный продукт анаэробного обмена, при дыхании образующаяся пировиноградная кислота подвергается дальнейшему окислению с образованием в конечном счете воды и СОз. [c.258]

    Примером окисления спиртов до карбонильных соединений— альдегидов или кетонов — является расщепление а-гликолей. Этот метод имеет большое значение для химии углеводов и для получения труднодоступных карбонильных соединений. Для окислительного расщепления а-гликолей применяют йодную кислоту или тетраацетат свинца реакцию обычно проводят при комнатной температуре. Примером может служить реакция окисления этилового эф.ира винной кислоты в этиловый эфир глиоксиловой кислоты  [c.153]

    Важными процессами в животных организмах являются реакции ферментативного окисления веществ — субстратов углеводов, жиров, аминокислот. В результате этих процессов организмы получают большое количество энергии. Приблизительно 90% всей потребности взрослого мужчины в энергии покрывается за счет энергии, вырабатываемой в тканях при окислении углеводов и жиров. Остальную часть энергии 10% дает окислительное расщепление аминокислот. [c.138]

    Следует, однако, отметить, что образование АТФ может осуществляться не только за счет энергии окислительных процессов. Наиболее древний процесс расщепления углеводов — сбраживание, идущее без потребления кислорода и в организме высших животных заканчивающееся образованием молочной кислоты. Сбраживание глюкозы до молочной кислоты дает всего около 50 ккал, тогда как полное окисление глюкозы дает 685 ккал. Хотя эффективность этого анаэробного процесса распада углеводов невелика, однако этот процесс может сохранить запасы АТФ на некоторое время и благодаря этому поддерживать жизнь. [c.242]

    Значительная скорость окислительного распада углеводов в организме и возможность быстрой мобилизации, их из депо (печень и мышцы) в условиях, требующих дополнительной затраты энергии (эмоциональное возбуждение, напряженная мышечная и умственная деятельность), свидетельствует о важной роли углеводов в энергетике организма. Так, психические факторы, эмоциональные переживания, вызывающие усиленное выделение адреналина в кровь, способствуют увеличению активности фосфорилазы, катализирующей фосфоролиз гликогена. При усиленной мышечной работе запасы гликогена исчезают. В мышечных клетках происходит расщепление и окисление углеводов, а энергия этого процесса используется для функциональной деятельности мышц. [c.318]

    Биологическое окисление — источник энергии живых организмов. Окислительные превращения охватывают все виды питательных веществ белки, углеводы и жиры, которые распадаются под влиянием ферментов пищеварительного тракта на аминокислоты, моносахариды, глицерин и жирные кислоты. Продукты расщепления образуют метаболический фонд биосинтеза и получения энергии. [c.320]

    Для аэробных организмов основной путь накопления АТФ состоит в окислительном расщеплении углеводов, приводящем в конце концов к образованию двуокиси углерода и воды. При этих процессах в биологических системах в качестве окислителей выступают никотинамидаденин-динуклеотид (НАД) или его фосфат (НАДФ), переходящие в соответствующие восстановленные нуклеотиды (НАД-На, НАДФ-На)  [c.364]

    Ацетилкофермент A попадает с током крови в ткани, где он участвует в нормальном процессе окислительного расщепления углеводов (гликогена), в котором тоже образуется ацетилкофермент А. Это соединение взаимодействует с промежуточным продуктом этого процесса (оксалилуксусной кислотой), образуя лимонную кислоту (см. том II Гликолиз ). Конечными продуктами окисления ацетильного остатка являются СО2 и Н2О. [c.777]


    Подобно другим соединениям, содержащим две или более групп ОН или =0 при соседних атомах углерода, углеводы подвергаются окислительному расщеплению йодной кислотой (разд. 28.6). Эта реакция, открытая в 1928 г. Л. Малапраде (университет в Нанси, Франция), является одним из наиболее важных методов в современных исследованиях структуры углеводов. [c.937]

    Первая попытка решения этих вопросов была предпринята Эвансом с сотрудниками [234] в 1957 году ири рассмотрении особенностей структуры витексина. Проводя окислительное расщепление витексина, авторы получили ряд фрагментов, выяснение структуры которых позволило высказать предположение о том, что заместителем является остаток углевода. Этот углевод находится в фуранозной форме, и связан с агликоном С-связью. Далее установлено, что С-заместитель представлен [c.90]

    Но на этом пути эволюционное развитие окислительного пентозофосфатного пути расщепления углеводов не остановилось. Была сформирована последовательность реакций, замыкающая этот путь в цикл, в результате чего стала возможной полная деградация молекулы сахара. Исходными субстратами на этом пути служат пентозы, образующиеся из рибулозо-5-фосфата, ксилулозо-5-фосфата и рибозо-5-фосфата (см. рис. 64). При участии двух дополнительных ферментов — транскетолазы и трансальдолазы — осуществляется перенос j- и Сз-фрагментов между изомерными пентозо-5-фосфатами и продуктами их взаимопревращений (рис. 66). Сначала транскетолаза переносит С2-фрагмент от молекулы ксилулозо-5-фосфата на молекулу рибозо-5-фосфата, в результате чего образуется С7-сахар и Сз-сахар — 3-ФГА. 3-ФГА, образующийся в транскетолазной реакции и, как известно, пред- [c.256]

    Гликолиз лежит в основе ряда процессов брожения, т. е. катаболиче-ских превращений углеводов микроорганизмами в анаэробных условиях (табл. 18.3). Брожение, как и анаэробное расщепление углеводов, — это внутренние окислительно-восстановительные процессы, в результате которых [c.252]

    Биохимическую роль витамин В= играет в форме коферментов никотинамидадениндинуклеотида (NAD) и никотинамиддинуклео-тидфосфата (NADP), открытых и исследованных О. Г. Варбургом, Г. фон Эйлером и Ф. Шлепком в 1935—1936 гг. Эти коферменты входят в многочисленную группу оксидоредуктаз (дегидрогеназ), принимающих участие почти в 150 различных биохимических реакциях дегидрирования, окисления, N-алкилирования, изомеризации, в восстановлении нитрата до нитрита и далее до аммиака, фотосинтезе, дыхании, энергетическом обмене, анаэробном расщеплении углеводов и т. д. В ходе окислительно-восстано- [c.675]

    СО2Н [уравнение (362)]. Такие реакции, контролируемые как по поглощению перйодата, так и по природе и количеству образующихся продуктов, широко используются при деградационном исследовании углеводов. При окислительном расщеплении диолов этими двумя типами реагентов интермедиатами служат циклические сложные эфиры, такие как (199) [c.154]

    Ограничение интенсивности сопряженного дыхания в результате увеличения отношения [АТФ]/[АТФ][Фц] может вызывать более сложные явления в обмене веществ. Иллюстрацией к такому влиянию может служить так называемый эффект Пастёра, который иногда определяют следующим образом Кислород подавляет брожение или Кислород подавляет расщепление углеводов . Было высказано предположение, что окислительное фосфорилирование приводит к повышению отношения [АТФ]/[АДФ], а это в свою очередь может снизить скорость реакции гликолиза  [c.245]

    Энзимохимическая сторона обратимых превращений карбонильных и гидроксильных соединений в значительной степени уже выяснена особенно это относится к окислительно-восстановительным реакциям, имеющим место при расщеплении углеводов [13] . Однако механизм дегидрирования высших спиртов, например спиртов стероидного ряда, в настоящее время подробно еще не исследован. [c.274]

    Энзиматические процессы, имеющие место при гидрировании этиленовых соединений, до настоящего времени исследовались лишь на примере дрожжевых ферментов [70]. Об их связи с процессами окислительно-восстановительного распада углеводов можно судить на основании того факта, что в свободных от сахаров дрожжевых суспензиях насыщение этиленовых соединений проходит лишь крайне медленно. Если содерл ание резервпьхх углеводов в дрожжах предварительно понижено путем длительной аэрации, то гидрирование этиленовых соединений вовсе не происходит. На связь распада углеводов с процессом гидрирования указывает также и зависимость последнего от кислотности раствора так, в бродящих растворах в присутствии пивных дрожжей скорость гидрирования коричного спирта увеличивается с повышением щелочности (исследовалась область pH 4,5—8,5). Как известно, с увеличением pH усиливаются также и явления дпспропорционирсвания, сопровождающие расщепление углеводов, и при pH 8,5 вместо нормального образования этилового спирта из триозы И меет место превращенме большей части последней в глицерин. В тех же условиях из ацетальдегида наряду с этиловым спиртом образуется уксусная кислота. В щелочной среде равновесие между триозой (или спиртом) и козимазой сильно смещено в сторону восстановления кофермента [71], вследствие чего количество водорода брожения , который посредством козимазы может быть использован для других реакций, увеличивается. [c.285]

    Для грибов характерен окислительный тип метаболизма. Это не означает, что грибы не способны к анаэробному расщеплению углеводов, т.е. не цогут их сбраживать (ведь спиртовое брожение осуществляется как раз дрожжами ) однако в анаэробных условиях сколько-нибудь длительный рост грибов невозможен. Кроме того, основными продуктами брожения оказываются этанол или молочная кислота. Другие органические кислоты образуются только в аэробных условиях, [c.328]

    Переходя к изучению наиболее важных в энергетическом отношении аэробных окислительных превращений углеводов в тканях с образованием СОг и НгО (дыхание), мы должны сразу же обратить внимание на существование тесной связи между механизмом анаэробного расщепления углеводов и их аэробным окислением. И аэробное, и анаэробное расщепление углеводов, как установлено, протекает на определенных этапах при участии одних и тех же ферментов (фосфофераз, фосфатаз, дегидрогеназ и т. п.). [c.258]

    Если гексозомонофосфат (глюкозо-6-монофосфорный эфир) подвер-гается дальнейшему фосфорилированию и превращается в фруктозодифос-форный эфир, то углевод дальше подвергается распаду с образованием молочной кислоты, т. е. имеет место гликолитическое расщепление. Если же присоединения второй частицы фосфата не происходит, то гексозомонофосфат распадается аэробным путем при участии дегидрогеназ с образованием фосфоглюконовой кислоты, отщеплением СОз из карбоксильной группы и последующим последовательным окислением пентозы до пировиноградной кислоты. Весьма вероятно, что этот путь окислительного распада углеводов имеет большое физиологическое значение. [c.268]

    В результате работ школ В. А. Энгельгардта [66] и Липмана [67] было сделано фундаментальное открытие — установлено существование наряду с гликолизом иного пути расщепления углеводов, названного В. А. Энгельгардтом апотомическим или окислительным путем (его называют также гексозофосфатным шунтом). Вследствие трудностей с выделением и идентификацией промежуточных продуктов лишь в последние 20 лет, благодаря широкому развитию и применению хроматографии, изотопной методики и ряда других приемов, работами многих научных коллективов (школы Энгельгардта, Диккенса, Липмана, Коэна, Реккера, Хореккера и других) были расшифрованы основные этапы этого пути (см. [68, 69]). [c.209]

    Энергетические затраты почек в значительной мере покрываются за счет окисления углеводов. Почки содержат ферменты, катализирующие окислительный распад углеводов и фосфорилирование органических веществ. Имеются основания предполагать, что аэробное фосфорилирование аденозиндифосфорной ки JЮTы с последующим расщеплением аденозинтрифосфорной кислоты играет важную роль в использовании химической энергии для секреторной функции почек. [c.493]

    Но на этом эволюционное развитие окислительного пентозофосфатного пути расщепления углеводов не остановилось. Была сформирована последовательность реакций, замыкающая этот путь в цикл, в результате чего стала возможной полная деградация молекулы сахара. Разберем коротко эту последовательность реакций. Исходными субстратами служат пентозы, образующиеся из рибулозо-5-фосфата, ксилулозо-5-фосфата и рибозо-5-фосфата (см. рис. 68). При участии [c.219]

    Третью зону (больщая интенсивность) составляют упражнения, вьшолнение которых осуществляется в основном за счет аэробных источников при значительной доле анаэробного гликолиза. Работа в данной зоне мощности вызывает наибольшее напряжение физиологических функций. Нижней границей данной зоны мощности является нагрузка на уровне ПАНО, а верхней — на уровне МПК (критической мощности). Основными энергетическими субстратами служат здесь углеводы (гликоген мьш1ц, глюкоза крови), расщепляемые как с использованием кислорода, так и в бескислородных условиях, а также жиры, подвергающ леся окислительному расщеплению. Предельное время работы для детей 7-8 лет не превьш1ает 6 мин, тогда как у старшеклассников — 20 мин. Работа в данной зоне мощности предъявляет высокие требования к кислородтранспортной системе, с одной стороны, и возможностям анаэробного гликолиза, с другой. ЧСС может находиться в пределах 165-195 уд/мин. [c.458]

    Основной путь катаболизма углеводов включает в себя гликолиз моносахаридов - О-глюкозы и В-фруктозы, источниками которых в растениях служат сахароза и крахмал. Гликолизом называют расщепление молекулы гексозы на два Сз-фрагмента (схема 11.26). В итоге образуются две молекулы пировиноградной кислоты, а выделяющаяся энергия запасается в двух молекулах АТФ, синтез которых произошел в результате так называемого субстратного фосфорилирования молекул АДФ. Для регенерирования НАД, участвующего в гликолизе, молекулы его восстановленной формы должны отдать полученные от субстрата окисления электрон и протон. В роли их акцептора в обычных для растений аэробных условиях выступает молекулярный кислород. Выделяющаяся при переносе электронов от НАДН к О2 энергия также используется для фосфорилирования АДФ, которое называют окислительным фосфорилирова-нием. Это дает дополнительно еще 4 молекулы АТФ. [c.338]


Смотреть страницы где упоминается термин Окислительное расщепление углеводов: [c.281]    [c.508]    [c.305]    [c.778]    [c.778]    [c.112]    [c.251]    [c.54]    [c.496]    [c.319]    [c.121]    [c.215]    [c.73]    [c.214]    [c.448]    [c.18]    [c.85]    [c.423]   
Смотреть главы в:

Химические превращения углеродного скелета углеводов -> Окислительное расщепление углеводов




ПОИСК







© 2024 chem21.info Реклама на сайте