Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промышленные синтезы на основе крекинг-газов

    Метан составляет сырьевую основу важнейших химических промышленных процессов получения углерода и водорода, ацетилена, кислородсодержащих органических соединений — спиртов, альдегидов, кислот. Получаемый при термическом разложении метана (реакция 1) мелкодисперсный углерод (газовая сажа) используется как наполнитель при производстве резины, типографских красок. Водород используется в различных синтезах, в том числе в синтезе аммиака. При высокотемпературном крекинге метана (реакция 2) получается ацетилен, необходимая высокая температура (1400—1600 С) создается электрической дугой. Одной из важных областей применения метана является получение так называемого синтез-газа — смеси оксида углерода(П) и водорода (реакции 3 и 4), используемого в дальнейшем для получения многих органических соединений. [c.69]


    Создание азотной промышленности сыграло крупную роль в развитии химии и химической технологии. Исследования в области азота оказали влияние на развитие важнейших разделов теоретической химии термодинамики и кинетики каталитических процессов. Эти работы послужили толчком к исследованию свойств газов под высоким давлением. Ряд важнейших понятий о гетерогенно-газовых каталитических реакциях установлен или значительно развит благодаря изучению синтеза аммиака. Такие процессы, как синтез метилового спирта и синтез высших спиртов, целиком возникли на основе технологии синтеза аммиака. Опыт и обобщения в области высоких давлений и температур, в области гетерогенно-газовых каталитических реакций оказались чрезвычайно полезными при разработке способов гидрирования углей с целью получения жидкого топлива и современных способов переработки нефти каталитического крекинга, процессов дегидрогенизации, полимеризации, циклизации, алкилирования, посредством которых осуществляется производство из нефти авиационного топлива, бутадиена, толуола и других продуктов. [c.163]

    Одним из таких полупродуктов является водород, который образуется в процессе крекинга и пиролиза нефти и углеводородных газов. Водород в свою очередь служит исходным веществом для производства аммиака, в молекуле которого на один атом азота приходится три атома водорода. Из аммиака получают углекислый аммоний, сульфат аммония, азотную кислоту, аммиачную селитру и ряд других продуктов, широко используемых в качестве удобрений и в химической промышленности для производства ряда веществ. Кроме того, из аммиака получается мочевина, представляющая собой органическое вещество, содержащее азот. В последнее время мочевина стала широко применяться в качестве удобрения, добавок в корм скоту, а также для производства некоторых пластмасс. Водород, который является основой синтеза аммиака, может получаться разными путями — при крекинге и пиролизе нефти и газа, при обработке кокса и угля водой при высокой температуре, при электролизе воды и т. д. Наиболее выгодным оказалось получение водорода из углеводородного газа. [c.356]


    На нефтеперерабатывающих заводах и заводах органического синтеза главными технологическими агрегатами являются трубчатые печи для крекинга, пиролиза и других процессов. Сущность крекинга состоит в разложении высокомолекулярных углеводородов на более простые этот процесс является основой переработки нефтяного сырья в жидкие моторные топлива с получением одновременно нефтяного крекинг-газа. На химических заводах печи играют серьезную роль. Например, при выработке из серного колчедана серной кислоты, имеющей большое значение в народном хозяйстве страны и являющейся одним из основных продуктов химической промышленности, применяются печи с обжигом серного колчедана в плотном или в кипящем слое, а в циклонных пе- [c.5]

    Промышленные синтезы на основе крекинг-газов [c.93]

    Бутилены получают обычно при переработке нефти наличие большого количества к-бутиленов, полученных из нефти при нормальной переработке (3000—6000 то на 1 млн. т нефти), а также при нефтехимических процессах, таких, например, как крекинг с водяным паром, пиролиз, дегидрогенизация бутана из природных и заводских газов (около 5000 т на 1 млн. т нефти), привело к быстрому развитию промышленных синтезов на основе бутиленов (суще- [c.469]

    Исключительно широкое и быстрое развитие химии ацетилена в Германии, как и разработка методов гидрогенизации и синтезов на основе окиси углерода, вызваны отсутствием в этой стране достаточно богатых источников сырья для получения алифатических соединений. В других странах многие продукты, производимые в Германии из ацетилена, могут получаться из нефтяного газа, нефти, крекинг-газов и т. д. Один из важнейших продуктов, получаемых в промышленном масштабе из ацетилена,—буна (бутадиеновые каучуки.—Прим. ред.) производится в других странах из других источников сырья. Например, в СССР его получают непосредственно из спирта—продукта переработки сельскохозяйственного сырья (а также синтетическими способа.ми.— Прим. ред.), в США—из спирта и из природного бутана. [c.176]

    Процессы крекинга заключаются в первую очередь в превращении парафиновых углеводородов либо как таковых, либо в виде алкильных заместителей нафтеновых или ароматических циклов. Процессы получения крекинг-бензинов закономерно сопровождаются образованием газообразных алифатических углеводородов, так называемых крекинг-газов, которые состоят из смесей олефинов и парафинов и являются важнейшим сырьем для промышленности органического синтеза. Поэтому следует поближе познакомиться с этими процессами и с химическими превращениями, лежащими в их основе. [c.224]

    Для СССР, располагающего огромными запасами нефти, синтез моторного топлива на основе синтез-газа, не имеет практического значения. Но этот процесс представляет интерес с точки зрения получения парафинов нормального строения, являющихся сырьем для процессов окисления, и нормальных олефинов, идущих на производство спиртов и моющих средств. Олефины могут быть получены непосредственно в результате этого процесса, а также и при последующем (термическом) крекинге парафина. Наибольшее развитие на основе окиси углерода и водорода в СССР получило производство метанола. Внедряется з промышленность и оксосинтез как процесс для получения альдегидов и первичных спиртов. [c.229]

    Изучение реакций термического крекинга предельных углеводородов имеет большое научное и практическое значение. Реакции термического распада алканов —путь к получению различных классов непредельных углеводородов, составляющих основу для большого химического синтеза самых разнообразных продуктов (спиртов, альдегидов, кислот, галоидопроизводных, полимеров, пластиков и т. д.). С другой стороны, пиролиз, или крекинг-процесс, является в настоящее время основным промышленным методом химической переработки нефтяных продуктов и газов с целью получения жидкого топлива и непредельных углеводородов, а термический крекинг — одной из распространенных форм этого метода. [c.3]

    Во второй части учебника рассмотрены основы химизма и кинетики термического, крекинга углеводородного сырья, промышленные процессы термического я каталитического крекинга, коксообразование, каталитический риформинг бензино-лигроиновых фракций нефти, переработка углеводородных газов. Описаны эксплуатация установок термического и каталитического крекинга, комплексные схемы переработки нефти на топливо и сырье для нефтехимического синтеза, комбинирование и укрупнение установок. [c.284]


    Сроки и темпы перехода промышленного органического синтеза с угольного сырья на нефтегазовое и с ацетилена на низшие олефины в разных странах были не одинаковы. В странах Западной Европы, Японии и СССР преобладание низших олефинов в сырьевой базе отрасли стало заметным с 60-х гг. В США этилен и пропилен, полученные из газов крекинга при переработке нефти, применяли наряду с ацетиленом в химической промышленности уже в 20—30-е гг. [3], а современный процесс производства низших олефинов — термический пиролиз углеводородов с водяным паром — выделился из процессов нефтепереработки и превратился в основной промышленный метод получения этилена и пропилена в период 1920—1940 гг. Работы в области производства и химического использования нефтяного и газового сырья проводились в эти же годы и в СССР. Вскоре после окончания войны вступили в строй нефтехимические заводы в гг. Сумгаите, Грозном, Куйбышеве, Уфе, Саратове, Орске и других городах. На этих предприятиях синтетический этанол, изопропанол и ацетон вырабатывались на основе этилена и пропилена, полученных в процессе пиролиза углеводородного сырья [4]. [c.6]

    Крекинг метана (и других содержащих метан газов) до ацетилена в электрических разрядах является, пожалуй, одним из наиболее интересных примеров применения электроразрядных методов к газовым реакциям. Значимость этой проблемы определяется как важностью использования для нужд органического синтеза огромных ресурсов природных и промышленных углеводородных газов, в основном состоящих из метана [7,39—52], так и поисками новых и более дешевых путей получения ацетилена, масштаб применения которого за последнее десятилетие неизмеримо вырос в связи с развитием на его основе синтетической органической промышленности. [c.392]

    Давно известно, что химические реакции протекают особенно легко на поверхностях раздела фаз. Однако в большинстве случаев практическое значение имеют только те реакции, в которых реагенты являются газами или жидкостями, а катализаторы — твердыми веществами. Такие гетерогенные каталитические реакции лежат в основе некоторых промышленных процессов, как, например, синтеза аммиака, серной и азотной кислот, метанола, затем различных процессов окислепия, гидрирования и дегидрирования, а также и каталитического крекинга нефтяных фракций. Естественно, что процессы, протекающие на поверхности катализатора, являются постоянным объектом исследования. Многие аспекты поверхностных реакций пока еще не выяснены. В настоящем изложении мы ограничимся рассмотрением точно установленных фактов. [c.224]

    Производство органических веществ зародилось очень давно, но первоначально оно базировалось на переработке растительного или животного сырья, состоявшей в выделении ценных веществ (сахар, масла) или их расщеплении (мыло, сиирт и др.). Органический синтез, т. с. получение болсс сложных веществ нз сравнительно простых, зародился в середине XIX века на основе побочных продуктов коксования каменного угля, содержавших ароматические соединения. Затем, уже в XX веке как источники органического сырья все большую роль стали и.грать нефть и природный газ, добыча, транспорт и переработка которых более экономичны, чем для каменного угля. На этих трех видах ископаемого сырья главным образом и базируется промышленность органического синтеза. В процессах их физического разделения, термического или каталитического расщепления (коксование, крекинг, пиролиз, риформинг, конверсия) получают пять главных групп исходных аеществ для синтеза многих тысяч других соединений  [c.8]

    Масштабы развития нефтеперерабатывающей промышленности и характер применяемых технологических процессов переработки нефти на протяжении почти 50 лет диктовались главным образом потребителями бензина. Для удовлетворения возросших потребностей в бензине был применен процесс термического крекинга. Однако увеличение потребления бензина авиацией и повышение требований к качеству авиационных бензинов вызвали необходимость дальнейшего изменения технологии их производства. Под влиянием этих требований стали применять сначала процессы каталитического крекинга, а затем каталитические процессы производства высокооктановых компонентов авиабензинов (полимеризация и алкилирование), и риформинга низкокачественных бензинов прямой перегонки и термического крекинга. К концу второй мировой войны (1943— 1945 гг.) наиболее высококачественные авиационные бензины нередко содержали от 50 до 70% синтетических компонентов (алкил-бензолов, парафинов разветвленного строения и др.). Производство синтетических компонентов авиабензинов в крупнозаводских масштабах на основе нефтезаводских газов явилось решающим шагом на пути развития современной промышленности нефтехимического синтеза. [c.5]

    Изомеризация олефинов обещала играть довольно существенную роль п деле улучшения октановых чисел бензинов, получаемых из синтез-газа, однако производство бензина из синтез-газа не приобрело особого значения, а широкое распространение в последние годы установок каталитического крекинга снизило интерес промышленности к изомеризации олефинов. При каталитическом крекинге изомеризация происходит при нормальном режиме процесса [27], а октановое число бензина термического крекинга при каталитической изомеризации улучшается весьма мало — на 3—4 единицы. При разработке этих и других промышленных процессов была выполнена большая научная работа хотя в настоящее время каталитический крекинг можот служить источником изобутилена и давать ого даже в большем количестве, чем этого требует производство полимеров изобутилена и бутилового каучука, тем не менее выполненная за последнее время работа по изомеризации парафинов и олефинов многое дала для уточнения нашего представления об основах химизма этих процессов. [c.103]

    В 30-х годах XX ст. в связи с массовым промышленным развитием в СССР синтеза каучука из этанола возникла и была решена проблема промышленного получения этанола из этилена нефтяных газов нефтепереработки (пиролиз, крекинг). Сейчас к мировом производстве этанола 70 % приходится на долю синтетического спирта, получаемого каталитической гидратацией этилена. Но в перспективе до 2000 г. не только прогнозируется массовое развитие ферментативного этанола на базе биомассы, но и возникает реальная промышленность производства этилена из этанола биомассы (Бразилия). Конечно, эта проблема долн на ])ешатьсяна основе новой ферментационной технологии, которая уже создается. Этанол не только в Бразилии, но и в США рассматривается по меньшей мере как перспективная высокооктановая присадка к автомобильным бензинам. [c.361]

    В свою очередь развитие промышленности органического синтеза и в экономическом и в техническом отношении оказалось возможным б.пагодаря нефтехимической промышленности. В узком смысле слова нефтехимическая промышленность — это отрасль, в которой на основе использования нефти в качестве сырья организовано одновременное и массовое производство различных непредельных углеводородов. Именно оборудование для получения в больших количествах непредельных углеводородов является как бы фундаментом всего здания нефтехимической промышленности. Своим появлепием на свет оборудование нефтехимической промышленности обязано развитию и совершенствованию технических методов переработки нефти — термокрекинга, каталитического крекинга, каталитического риформинга, дегидрирования, полимеризации, алкилирования и т. д. Отходящие газы, выделяющиеся при термическом и каталитическом крекинге, содержат большое количество непредельных углеводородов (олефинов), а отходящие газы, выделяющиеся при каталитическом риформинге,— большое количество ароматических углеводородов. При этом оказывается возможным осуществлять начальный нефтехимический процесс, который заключается в превращении предельных углеводородов в непредельные, не выходя за рамки нефтеперерабатывающей промышленности. [c.98]

    С. С. Наметкина и их многочисленных сотрудников и учеников послужили основой для создания современной промышленности органического синтеза, перерабатываюш ей углеводороды газов крекинга и пиролиза нефти в ценные химические продукты. [c.6]

    Выдающимся достижением является создание в СССР в 1932—1935 гг, впервые в мире промышленного производства синтетического каучука по методу С. В. Лебедева. Замечательные работы советских ученых—А. Е. Фаворского (в области производных ацетиленовых углеводоров), Н. Д. Зелинского (по гидрированию и циклизации углеводородов). Н. Н. Семенова (изучение цепных реакций окисления углеводородов), П. Г. Сергеева (по алкилированию бензола, получению гидроперекисей алкилбензо-лов и их переработке) и др, позволили создать научную основу для организации производства разнообразных синтетических веществ. В Научном институте органических полупродуктов и красителей (НИОПиК). наряду с методами синтеза ряда красителей, были разработаны методы производства различных соединений ароматического ряда, В Государственном институте прикладной химии (ГИПХ) созданы методы производства различных хлорорганических растворителей и полупродуктов, требуемых для производства каучуков и пластических масс. На опытно-промышленной установке разработаны методы использования газов крекинга и пиролиза нефти в производстве крупно-тоннажных продуктов органического синтеза. Ряд других научно-исследовательских институтов и опытных заводов разработали и продолжают разрабатывать многочисленные новые методы синтеза важных органических веществ. [c.297]

    В коксохимической промышленности Франции, где глубокая химическая переработка коксового газа получила наибольшее развитие, на основе метана коксового газа вырабатывают широкий ассортимент продуктов. На центральном перерабатывающем заводе в Мазенгарбе (район угольного бассейна Нор э Па-де-Кале) метан коксового газа подвергается крекингу с получением синтез-газа последний используется для производства метанола и его производных. Часть синтез-газа направляется на синтез аммиака. Производство метанола на заводе было организовано в 1928 г., а к 1964 г. мощность установки составляла 40 тыс. т, т. е. более Vg общего производства в то время метанола в стране (ПО тыс. т). На этом же заводе строится новая установка синтеза метанола производительностью 60 тыс. т в год. На основе метанола завод производит форм- [c.48]


Смотреть страницы где упоминается термин Промышленные синтезы на основе крекинг-газов: [c.108]    [c.71]    [c.108]    [c.316]    [c.58]   
Смотреть главы в:

Лекции по органической химии -> Промышленные синтезы на основе крекинг-газов




ПОИСК





Смотрите так же термины и статьи:

ПРОМЫШЛЕННЫХ ГАЗОВ

Промышленный синтез



© 2025 chem21.info Реклама на сайте