Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стенки в магнитных полях

    Существует много различных типов масс-спектрометров. Детали конструкции и относительные достоинства различных типов приборов описаны в литературе [1—7]. Большинство основных принципов масс-спектрометрии можно продемонстрировать, описав принцип действия простого масс-спектрометра, изображенного на рис. 16.1. Образец, находящийся в емкости, вводится через отверстие, входит в ионный источник а и проходит через электронный пучок в точке в, пучок обозначен штриховой линией. При взаимодействии образца с электронами, имеющими достаточную энергию, образуются положительные ионы, движущиеся по направлению к ускоряющим пластинам гид, поскольку между задней стенкой (напускной щелью) и передней стенкой этого устройства существует небольшая разность потенциалов. Отрицательные ионы притягиваются задней стенкой, которая заряжена положительно относительно передней стенки, и разряжаются на ней. Положительные ионы проходят через пластины гид, ускоряются под действием большой разности потенциалов (несколько тысяч вольт) между этими пластинами и покидают ионный источник через отверстие б. Заряженные ионы движутся по круговой орбите под влиянием магнитного поля. Полуокружность, помеченная е, есть траектория движения ускоренного иона в магнитном поле напряженности Н. Радиус полуокружности г зависит от следующих параметров 1) ускоряющего потенциала V(т. е. от разности потенциалов между ускоряющими пластинами г и (3), 2) массы иона т, 3) заряда иона е и 4) напряженности магнитного поля Н. Связь между этими параметрами выражается уравнением  [c.313]


    Таким образом, плазма осуществляется в любом данном объеме при достаточно больших значениях п. Этому отвечает большое электростатическое взаимодействие между компонентами плазмы. Благодаря этому взаимодействию плазма является своеобразной упругой средой, в которой возможно возбуждение колебаний разнообразных типов. Отличие плазмы от смеси газов проявляется особенно ярко в ее взаимодействии с электрическим и магнитным полями. Плазма обладает большой электропроводностью. Особое значение имеет взаимодействие плазмы с магнитным полем, которое может играть роль стенок сосуда для плазмы и направлять [c.537]

    При прохождении через плазму электрический ток создает сильное магнитное поле, которое сжимает поток электронов и ионов в плазменный шнур. Этим достигается тепловая изоляция плазмы от стенок сосуда. С увеличением силы тока электромагнитное сжатие плазмы проявляется сильнее. В этом заключается сущность так называемого пинч-эффекта. Как показали исследования, пинч-эффект и силы, создаваемые внешними магнитными полями, меняющимися по определенному закону, можно с успехом использовать для удержания плазмы в магнитной бутылке , где происходит реакция синтеза. [c.13]

    Например, методы предварительного разгона ионов дейтерия в вакуумной трубке до больших энергий с помощью электрического тока. Полученные здесь быстрые ионы вводятся в цилиндрический сосуд с газом. Эти ионы передают свою энергию молекулам, быстрые ионы и электроны удерживаются от попадания на боковые стенки магнитным полем по принципу магнитной бутылки. [c.54]

    Герметичный привод к винтовому перемешивающему устройству реактора (рис. 71) представляет собой взрывозащищенный асинхронный электродвигатель. Ротор двигателя 4, насаженный на один вал 2 с перемешивающим устройством 9 заключен в неподвижную экранирующую гильзу 3 из немагнитного металла (например, из аустенитной стали), герметично закрепленную в корпусе реактора 1. Статор 5 двигателя с обмоткой расположен с наружной стороны экранирующей гильзы. Для охлаждения ротора масляным термосифоном из масляной ванны 6 подается масло. Для охлаждения масла в рубашку 7 подается вода. Для защиты ротора и подшипников привода от проникновения коррозионной среды из реактора в верхнюю часть привода подается азот. Создаваемое статором электродвигателя вращающееся магнитное поле воздействует через стенки экранирующей гильзы на ротор, вращая его вместе с рабочим органом. [c.248]


    Существует несколько способов осуществления бессальникового привода. Наибольшее распространение получил привод с экранированным двигателем (рис. 230). Ротор 1 электродвигателя крепят непосредственно на вал мешалки 5. Его отделяют от статора 3 защитной гильзой 4 и приводят в движение вращающимся магнитным полем статора. Пространство под защитной гильзой 4 связано с аппаратом, и на стенки гильзы действует то же давление, что и в аппарате. Толстые стенки защитной гильзы увеличивают магнитное сопротивление зазора между ротором и статором и снижают тем самым КПД привода. Чтобы уменьшить толщину стенки, ротор делают малого диаметра, а пластины статора надевают с натягом на защитную гильзу. Двигатель отделен от аппарата узкой горловиной, для того чтобы уменьшить теплопередачу от аппарата к двигателю. Статор двигателя охлаждают с помощью водяной рубашки и змеевика 2. [c.246]

    Высокочастотное титрование (осциллометрия) является разновидностью кондуктометрнческого титрования. В случае высокочастотного титрования исследуемый раствор помещают в высокочастотное, электромагнитное поле измерительного прибора, а затем в этот раствор из бюретки или другим способом постепенно приливают раствор титранта, реагирующего с определяемым веществом электроды укрепляют вне анализируемого раствора непосредственно у стенок ячейки и повышают частоту переменного тока до нескольких тысяч мегагерц. Высокочастотное титрование вследствие его особенностей иногда называют без-контактной кондуктометрией, так как исследуемый раствор не имеет гальванического контакта ни с электродами, ни с катушками индуктивности — источником осциллирующего магнитного поля. [c.27]

    Электромагнитное поле в волноводе определяется уравнениями Максвелла и граничными условиями на его стенках [18]. Решение соответствует краевой задаче. Неймана уравнения Гельмгольца для прямоугольного волновода (рис. 4.4). Такое решение в случае волн Я-типа приводит к зависимости продольной компоненты напряженности магнитного поля в виде парциальных (собственных) волн от пространственных переменных  [c.86]

    В промышленных установках, где необходимо передать объекту значительную мощность, устройства связи должны иметь повышенную электрическую прочность. Таким свойством обладает, например, открытый конец волновода, сопрягаемый с отверстием в определенном месте стенки камеры. Этим местом может служить область с пучностью магнитного поля, причем направления силовых линий магнитных полей в волноводе с волной Яю и в камере должны быть параллельными. В один и тот же рабочий объем может включаться несколько источников для увеличения мощности и создания равномерного поля. В этом случае излучатели должны быть развязаны, т.е. не взаимодействовать между собой. Для этого вводы могут иметь разную поляризацию волн. [c.90]

    Рассмотрим совокупность частиц, заключенных в некотором определенном объеме. На -ю частицу действует сила / г, возникающая в результате взаимодействия этой частицы с другими частицами, и внешние силы, возникающие в результате взаимодействия частицы со стенками объема и любыми электрическими и магнитными полями. Для этой частицы х-ю компоненту уравнения движения (опуская индекс I для момента) можно представить следующим образом  [c.24]

    Электрические индукционные печи (рис. 7-11). Нагревание в этих печах осуществляется индукционными токами. Обогреваемый аппарат 1 является сердечником соленоида 2, охватывающего аппарат по соленоиду пропускается переменный ток, при этом вокруг соленоида возникает переменное магнитное поле, которое индуцирует в стенках обогреваемого аппарата электродвижущую силу. Под действием возникающего вторичного тока нагреваются стенки аппарата. Соленоид выполняется из медной или алюминиевой проволоки, имеющей малое омическое сопротивление. [c.173]

    К нагреванию сопротивлением относится нагревание индукционными токами, которое производится следующим образом. Аппарат окружают обмоткой, через которую пропускается переменный ток. При этом вокруг обмотки образуется переменное магнитное поле, индуцирующее в стенках аппарата электродвижущую силу. В результате в стенках аппарата возникает электрический ток, который и прогревает их по всей толщине. [c.421]

    В очень мелких изолированных в магнитном отношении кристаллах свободная энергия будет минимальной, если в кристалле образуется всего один домен (рисунок 1.3.10). В таком кристалле не может образовываться магнитная структура, ибо уменьшение энергии внепшего магнитного поля из-за деления на два домена перекрывается затратой энергии, необходимой для образования стенки (так как толщина стенки в этом случае соизмерима с размерами кристалла), и свободная энергия не будет минимальной. Подобные кристаллы называются однодоменными частицами. Однодоменная [c.28]


    Поперечный компонент плотности тока внутри канала на участке с электродами в зоне х- оо (где В<0) направлен от отрицательного электрода к положительному (сверху вниз), так как здесь доминирует ток, индуцируемый магнитным полем на участке изолированных стенок В = 0) индуцируемого магнитным полем тока нет, и поэтому здесь вектор имеет противоположное направление (снизу вверх). Таким образом, при входе жидкости в магнитное поле возникает зона замкнутой циркуляции электрического тока, в которой последний меняет свое направление на противоположное.  [c.220]

    Если на стенках поддерживается разность потенциалов, то возникает электрический ток /г, индуцирующий собственное магнитное поле, линии напряженности которого по правилу буравчика направлены перпендикулярно к плоскости течения (по оси у). [c.224]

    В непосредственной близости от стенки, т. е. в ламинарном подслое, данное решение непригодно здесь, как и при отсутствии магнитного поля, можно предположить, что границе перехода ламинарного подслоя в турбулентный слой отвечает постоянное значение локального числа Рейнольдса (см. формулу (125) гл. VI), в первом приближении такое же, как и при отсутствии поля  [c.255]

    Для очистки воды от взвешенных примесей используются магнитные фильтры производительностью до 120 м /ч при начальной концентрации взвешенных частиц 600—800 мг/л, обеспечивающие очистку на 85—90 %. Магнитная обработка растворов способствует увеличению степени гидролиза солей, препятствует образованию накипи на стенках теплообменной аппаратуры. Под действием магнитного поля возрастает поверхностная активность реагентов и увеличивается их растворимость в воде. Обработка реагентов в магнитном поле позволяет увеличить степень извлечения продуктов при флотационном обогащении руд на 1,5—16 %. Обработка растворов в магнитном поле увеличивает эффективность шламо-улавливания на 3—4 % В то же время после магнитной обработки стоков размеры кристаллизующихся примесей уменьшаются и одновременно снижается скорость их осаждения, что усложняет проблему выделения шлама. Эффект обработки зависит не только от напряженности магнитного поля и времени контакта жидкости с магнитами, но и от химического состава обрабатываемой жидкости. Так, например, при концентрации свободной углекислоты в стоке более равновесной (Асоз > 0)/Ср > 1, при концентрации равной равновесной (Дсоз = 0) Д"р= 1 магнитная обработка неэффективна. Повышение температуры стока делает обработку ее магнитным полем более эффективной. Использование метода магнитной обработки не вносит дополнительных соединений в стоки и газы, а его применение, как показывают технико-экономические расчеты, позволяет значительно сократить затраты на установки для переработки газообразных и жидких выбросов. [c.483]

    Расчет ламинарного подслоя и трения на стенке производится из тех же соображений, что и в предыдуш ем случае. При действии поперечного магнитного поля (О, Ву, 0) профиль скоро- [c.255]

    Имеющиеся экспериментальные данные о воздействии продольного магнитного поля на слой смешения (в начальном участке струи) относятся к случаю, когда начальная толщина слоя смешения не равна нулю, так как спут-ные потоки стекают с разделяющей стенки, по обе стороны которой имеются пограничные слои. Если считать, что начальная толщина зоны сме- [c.264]

    Чтобы получить высокое разрешение, необходимо сделать магнитное поле как можно более однородным. Для этого используют полюсные наконечники большого диаметра и применяют узкий межполюсный зазор, но этого оказывается недостаточно для получения поля такой однородности, которая нужна для измерения спектров высокого разрешения. Дальнейшее улучшение однородности поля осуществляется двумя путями. Во-первых, с помощью специальных токовых катушек, называемых шиммами. Они расположены на стенках датчика и имеют специальную форму. Шиммы позволяют скомпенсировать градиенты магнитного поля электромагнита вдоль трех координатных осей, а также дают возможность создавать квадратные градиенты. Технически возможно произвести автоматическую подстройку разрешающей способности, но почти во всех спектрометрах эта регулировка выполняется вручную. Второй путь улучшения разрешения состоит в том, что во время измерения спектра трубку с исследуемым образцом вращают вокруг оси. Для этого подают сжатый воздух по касательной к втулке, надетой на трубку. Втулка служит турбинкой, вра- [c.170]

    В магнитных плазменных генераторах плазма движется по каналу поперек магнитного поля, что приводит к возникновению электрического тока между электродами, расположенными на стенках канала. В термоэлектронных генераторах плазма представляет собой внутреннее сопротивление цепи, включающей горячий катод и холодный анод. [c.539]

    Требование высокой однородности магнитного поля —одно из самых жестких требований при конструировании приборов ЯМР. Однородность обеспечивается большим диаметром полюсных наконечников (до 30 см) и особой структурой их материала. Однородность поля повышают также с помощью системы небольших катушек определенной формы (шимм), расположенных на поверхностях полюсных наконечников или на стенках датчика спектрометра (рис. 11). Межполюсный зазор делают не менее 3 см, чтобы в него можно было поместить образец объемом не менее 0,1 см и необходимые детали генератора и детектора. [c.41]

    Для повышения воспроизводимости количественных определений и снижения пределов обнаружения предлагаются различные способы стабилизации дугового разряда наложение магнитного поля, соосного разряду обдув свободно горящей дуги потоком газа помещение разряда в охлаждаемую трубку, которая ограничивает поперечное сечение разряда. Такие приемы не только стабилизируют дугу пространственно, но и изменяют параметры разряда — напряжение, температуру и электронную концентрацию, пространственное распределение и концентрацию элементов в облаке. В дуговом плазмотроне используется принцип стабилизации дуги потоком газа и стенками. [c.52]

    Накапливающиеся в оборотной воде соли образуют на теплообменной поверхности так называемые карбонатные отложения, более чем на 50% состоящие из карбоната кальция. Основные методы борьбы с ними — обработка охлаждающей воды кислотой (обычно серной) для снижения общей щелочности воды фосфатированис путем введения в воду раствора гексаметафосфата натрия, тормозящего процессы кристаллизации и осаждения карбоната натрия на стенках аппаратуры обработка воды магнитным полем, воздействие которого вызывает быстрый рост кристаллов карбонатных и других отложений, которые сорбируют на своей поверхности ионы карбонатов кальция и магния, растут и выпадают в виде шлама, легко уносимого потоком. [c.85]

    Каждой паре индексов (т, п) в уравнении (4.15) соответствует свой магнитный тип волны, обозначаемый как. Обычно а>Ъ, т.е. а -размер широкой, а Ь - узкой стенки волновода, т.е. основным типом волны является волна Яю. В этой волне электрическое поле направлено вдоль узкой стенки. Вид поля Яю и его эпкч)ы показаны на рис. 4.4. Картина., поля изображена силовыми линиями электрическое поле -сплошные линии, магнитное - штриховые. В соответствии с граничными условиями, в стенках волновода на толщине скин-слоя протекают токи, показанные на рис. 4.4 двойными стрелками. Дисперсия фазовой [c.86]

    Волновые пакеты, испускаемые при тепловом движении электрически заряженных частиц в стенках полости, распространяются со скоростью снета с, поскольку при исчезновении электрического поля возникает магнитное поле, которое, в спою очередь, исчезает, чтобы породить электрическое поле вдоль пути расиространеии - волны. Энергия Е, частота Vy, волновое чнсло v и длина волны X связаны соотношением Эйнштейна [c.452]

    В течении Гартмана иред-иолагалось, что стенки канала являются изоляторами, и суммарный электрический ток, возникающий в направлении, иернендикулярном как к вектору скоростп, так и к вектору индукцип наложенного магнитного поля, равен нулю, вследствие чего также равна нулю. [c.215]

    Рассмотрим поток электропроводной жидкости в зоне входа в участок канала с магнитным полем (рпс. 13.13). Обозначим высоту канала (расстояние между электродами) 2а, а ширину канала 26. Течение в канале будем считать двумерным, что допустимо при условии Ь> а. Начало электродов находится в плоскости X = 0 при. г < О стенки канала неэлектроироводны. [c.218]

    Принимая во внимание наличие ламинарного подслоя с линейным профилем скорости и полагая, что в канале, как и в случае турбулентного пограничного слоя, нараметры подслоя, согласно (246), (247) и (253), отвечают постоянному значению локального числа Рейнольдса на его границе К л =одЫлбл/М =т)л = = 156, т. е. Т1л = бп/ = 12,5, получим (в пределах двухслойной модели течения) с помощью уравнений (255), (258) и (260) напряжения трения на стенке канала и профили скорости при соответствующих ориентациях магнитного поля. [c.257]

    Для улучшения условий возбуждения спектров в дуге применяют контролируемую атмосферу (например, инертного газа), стабилизацию положения плазмы в пространстве магнитным полем (в частности, вращающимся) или потоком газа. Получили также распространение дуговые плазмотроны (рис. 3.1). Анод дуги 3 имеет отверстие диаметром 1—2 мм, через которое выдувается инертный газ, подаваемый в камеру под давлением 150—200 кПа по трубке, расположенной касательно к стенкам камеры. Образующиеся в камере вихревые потоки охлаждают и сжимают дуговую плазму, которая затем вместе с газом выбрасывается через отверстие в аноде и в виде устойчивой струи длиной 10—15 мм светится над поверхностью анода. Температуру плазмы можно при этом варьировать в интервале 5000—12000 К. Плазмотрон применяют главным образом для анализа растворов и реже для анализа порощков. [c.60]

    Движение частиц горячей плазмы, помещенной в сильное магнитное поле, ограничивается магнитносиловыми линиями. Такую плазму называют замагииченной. Частицы ее совершают вихреобразные движения вдоль силовых линий магнитного поля и, таким образом, беспорядочное движение частиц приобретает упорядоченность. Эту плазму можно сдерживать магнитной стенкой , толкать магнитным поршнем и удерживать в магнитной ловушке . Если горячую плазму поместить в сильное электрическое поле, т. е. пропустить через нее электрический ток большой силы, то она будет сжиматься, вытягиваясь в плазменный шнур . [c.40]

    Возможности метода ЭПР с внутренним ЭХГ в значительной мере определяются конструкцией ячейки, рабочая часть которой имеет цилиндрическую или плоскую форму с расстоянием между стенками 2—3 мм. При этом ячейка должна обеспечивать равномерность магнитного поля, четкий контроль потенциала рабочего электрода по трехэлектродной системе, минимум омического падения потенциала, сравнительно высокое значение тока генерации радикальных частиц, возможность освобождения раствора от парамагнитных молекул кислорода. С. Брукенстайном и сотр. описана конструкция электрохимической ячейки с кооксиальными электродами — катодом в виде спирали из золотой проволоки и анодом в виде платинового цилиндра (рис. 6.16), позволяющая, по мнению авторов, повысить чувствительность метода на несколь- [c.226]

    Инверсия рабочих уровней создается при прохождении пучка атомов в неоднородном магнитном поле шестиполюсной линзы. Атомы в верхнем энергетическом сос1оянии фокусируются на входе в колбу-накопитель, помещенную внутри термостатированного СВЧ-резонатора, настроенного на частоту сверхтонкого перехода. Специальное покрытие стенок колбы, которая одновременно служит реактором, обеспечивает пребывание в ней атомов Н без изменения их спинового состояния в течение 0,3 — 0,4 с. Газы-реагенты подаются непосредственно в колбу-накопитель, их стационарная концентрация измеряется с точностью до 1%. [c.303]

    Несколько лучшее понимание природы этих испускаемых частиц, или лучей пришло с появлением магнитного метода исследования-Еще в 1899 г. было найдено, что бета-лучи отклоняются в магнитном поле, причем вид отклонения показывал, что они очень похожи на электроны с большой энергией. Одновременно первые исследования пока зали, что альфа-лучи, напротив, не чувствительны к магнитному полю. Однако, продолжая исследование излучений, Резерфорду удалось в 1903 г. показать, что в достаточно сильном магнитном поле отклоняются и альфа-частицы. Направление отклонения свидетельствовало о том, что альфа-частицы заряжены положительно, а расчет отнощения заряда к массе убедил в том, что они могут быть дважды ионизированными атомами гелия. Эта идея подтверждалась постоянным присутствием гелия в урановых рудах, а впоследствии была доказана постановкой следующего опыта. Радиоактивный образец запаивали в ампулу с достаточно тонкими стенками, сквозь которые могли проникать альфа-частицы, и ампулу помещали в ва-куумированный стеклянный сосуд. Через несколько дней в сосуде оказывалось достаточное для обнаружения спектральным методом количество гелия. [c.384]

    Одно из эффективных средств борь.бы с накипью — омагничива-ние воды, для чего воду, предназначенмую для питания котлов, пропускают через постоянное магнитное поле, что не требует ни капитальных затрат, ни реконструкции предприятия. При кипении омаг-ниченной воды на стенках котлов не образуется плотной накипи, [c.289]


Смотреть страницы где упоминается термин Стенки в магнитных полях: [c.199]    [c.248]    [c.351]    [c.427]    [c.33]    [c.113]    [c.55]    [c.113]    [c.114]    [c.208]    [c.250]    [c.262]    [c.351]    [c.113]    [c.254]    [c.218]   
Смотреть главы в:

Физика жидких кристаллов -> Стенки в магнитных полях




ПОИСК





Смотрите так же термины и статьи:

Поле магнитное

Стевны

Стейси



© 2024 chem21.info Реклама на сайте