Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий свойства

    Как изменяются основные физические и химические свойства щелочных металлов при переходе от лития к цезию  [c.155]

    Металлические свойства от лития к цезию возрастают, а электропроводность уменьшается. Как это объяснить  [c.151]

    Формы нахождения в природе. Литий, натрий, калий, рубидий и цезий — элементы высокой активности с резко выраженными металлическими свойствами они встречаются в природе только в виде соединений. Наиболее распространенными из них являются натрий и калий, содержание которых в земной коре соответственно 2,8 и [c.49]


    В главной подгруппе первой группы периодической системы находятся литий, натрий, калий, рубидий, цезий и франций В соответствии с номером группы в своих соединениях (в большинстве случаев ионных) они проявляют всегда степень окисления -Ы. Чисто ковалентное а—ст-связывание имеет место в газообразных молекулах Кза, Ка и т. д. Эти элементы — самые неблагородные . Их стандартные потенциалы порядка от —2,7 до —3,0 В (ср. табл. В.14). Ионные радиусы сопоставлены в табл. А.16. Обраш,ает на себя внимание тот факт, что при переходе от натрия к калию изменение радиусов оказывается, большим, чем в следующем за ними ряду элементов К—НЬ—Сз почему ). Это обстоятельство является главной причиной отличия свойств натрия от его более тяжелых аналогов. С учетом этого становится понятной аналогия в свойствах соответствующих соединений калия, рубидия и цезия. Особо следует под  [c.597]

    У атома цезия начинает заполняться бх-состояние, а у атома бария это заполнение завершается. У следующего за барием лантана начинает заполняться 5й(-оболочка. Таким образом, у этих атомов оказываются незаполненными не только предыдущий (пятый) этаж , но и в четвертом остаются свободными 14 мест 4/-ячеек. И вот после лантана начинают заполняться эти далеко находящиеся от внешних электронных оболочек орбиты. Естественно, что элементы, в которых происходит заполнение /-ячеек, по своим свойствам весьма близки к лантану. Они также [c.461]

    Точно так же периодическая система дала толчок к исправлению атомных масс некоторых элементов. Например, цезию раньше приписывали атомную массу 123,4. Менделеев же, располагая элементы в таблицу, нашел, что по своим свойствам цезий должен стоять в главной подгруппе первой группы под рубидием и потому будет иметь атомную массу около 130. Современные определения показывают, что атомная масса цезия равна 132,9054. [c.77]

    В главных подгруппах периодической системы восстановительная способность нейтральных атомов растет с увеличением порядкового номера. Так, в ряду —Сз, например, Ь проявляет восстановительные свойства гораздо слабее, чем другие элементы, а наиболее сильный восстановитель — Сз, если восстановительную способность характеризовать величиной потенциала ионизации. Но литий имеет более электроотрицательную величину стандартного электродного потенциала, чем цезий, и в ряду напряжений расположен выше его. [c.94]

    У цезия начинается постройка шестой оболочки, хотя не только не образовался еще 5 -подуровень на пятой оболочке, но и на четвертой еще не начиналась постройка 4/-подуровня. Заполнение этого подуровня, находящегося уже глубоко внутри атома, происходит только у элементов от Се (2 = 58) до Ьи (2 = 71), составляющих группу редкоземельных элементов, или лантаноидов. Атомы этих элементов обладают аналогичной структурой двух наружных оболочек, но различаются по степени достройки внутренней (четвертой) оболочки. Эти элементы весьма мало различаются между собой по химическим свойствам, так как химические свойства определяются главным образом структурой наружных электронных оболочек. Подобный же случай встречается еще раз в седьмом периоде периодической системы. У элементов, следующих за актинием и называемых актиноидами, происходит достройка f подуровня пятой оболочки. [c.41]


    Эффективность добавки натрия в данном случае объясняют свойствами ферритов натрия, а близкую каталитическую активность образцов, промотированных натрием и цезием,-близостью величин энергий связи кислорода [108], [c.43]

    Однако положительные однозарядные ионы этих элементов, в виде которых все они (кроме водорода) большей частью содержатся в соединениях, различаются по числу электронов на внешнем уровне. Ион водорода Н представляет собой ядро атома, полностью лишенное электронной оболочки ион лития имеет два электрона, ионы натрия, калия, рубидия, цезия и франция содержат на внешнем уровне по 8 электронов, а однозарядные ионы меди, серебра и золота — по 18 электронов. Различия в строении электронной оболочки ионов являются одной из причин значительного отличия свойств меди, серебра и золота (и их соединений) от свойств остальных элементов первой группы (и их соединений). [c.48]

    В восьмом ряду дополнительное осложнение связано с тем, что после лантана La идут 14 элементов, чрезвычайно сходные с ним по свойствам, названные лантаноидами. В приведенной таблице они размещены в виде отдельного ряда. Таким образом, восьмой и девятый ряды образуют большой период, содержаш,ий 32 элемента (от цезия s до радона Rn). Наконец, десятый ряд элементов составляет незавершенный 7-й период. Он содержит лишь 21 элемент, из которых 14, очень сходные по свойствам с актинием Ас, выделены в самостоятельный ряд актиноидов. Как мы теперь знаем, такая структура таблицы является отражением фундаментальных свойств химических элементов, связанных с особенностями строения их атомов. [c.22]

    В твердом состоянии ш.елочные металлы хорошо проводят электрический ток. Это типичные металлы. Они легкоплавки, быстро окисляются на воздухе (цезий со взрывом ). Хранят щелочные металлы без доступа воздуха и влаги, чаще всего под керосином. Свойства щелочных металлов закономерно изменяются по группе с увеличением относительной атомной массы (табл. 30). [c.143]

    Приведенные в табл. 14.2 данные показывают, что в большинстве случаев свойства щелочных металлов закономерно изменяются при переходе от лития к цезию. В основе наблюдающихся закономерностей лежит возрастание массы и радиуса атома в подгруппе сверху вниз. Рост массы приводит к возрастанию плотности. Увеличение радиуса обусловливает ослабление сил притяжения между атомами, что объясняет снижение температур плавления и кипения и уменьшение энергии атомизации металлов, а также уменьшение энергии ионизации атомов при переходе от лития к цезию. Однако стандартные электродные потенциалы щелочных металлов изменяются в ряду Li — s не монотонно. Причина этого, подробно рассмотренная в разделе 11.3.2, заключается в том, что величины электродных потенциалов связаны с несколькими факторами, различно изменяющимися при переходе от одного элемента подгруппы к другому. [c.383]

    Составить формулы гидроокисей следующих элементов а) рубидия б) цезия в) натрия г) лития д) калия. Расположить их в ряд в порядке возрастания основных свойств гидроокисей. [c.39]

    В первой половине XIX в. выяснилось, что между химическими элементами существуют не только различия, но и сходства в свойствах, позволяющих группировать элементы в естественные семейства. Первые естественные семейства включали в себя по три особенно сходных между собой элемента, а потому и получили название триад. Так, И. Доберейнер сгруппировал в такие триады 1) калий, рубидий и цезий 2) кальций, стронций и барий 3) серу, селен и теллур 4) хлор, бром и иод. При сравнении атомных масс элементов каждой триады Доберейнер установил, что атомная масса промежуточного по химическим свойствам члена каждой триады является средним арифметическим из атомных масс крайних ее членов. Но лишь Д. И. Менделеев установил общий закон, охватывающий все стороны взаимосвязи между химическими элементами. [c.22]

    С этой точки зрения интересно рассмотреть зависимость некоторых свойств щелочных металлов от их положения в периодической системе. Наиболее легко будет отдавать свои валентные электроны цезий (он применяется в фотоэлементах), менее легко рубидий, затем калий, натрии и литий. Чем легче атомы каждого из этих металлов отдают свои электроны, тем больше в узлах кристаллической решетки будет возникать положительно заряженных ионов, которые отталкиваются (действие закона Кулона). Вследствие этого прочность решетки будет падать, металл становится мягче, и тем- [c.97]

    Приведенные данные показывают, что ряд свойств как физических, так и химических закономерно изменяется с возрастанием порядкового номера элемента и увеличением числа застраиваемых электронных слоев п в атоме (соответственно номеру периода, в котором расположен данный щелочной металл). Так, радиус атома возрастает, а энергия ионизации падает. В связи с этим химическая активность повышается от Ы к Сз и Рг. Это отчетливо проявляется в процессе окисления металла. Так, литий сравнительно стоек, а, например, цезий самовоспламеняется на воздухе. Литий спокойно взаимодействует с водой, калий при этом самовоспламеняется, а у цезия реакция идет со взрывом. Наиболее активен щелочной металл франций, энергия ионизации его атома наименьшая (3,98 эв). Электролитическая диссоциация гидроксидов ЭОН (щелочей) возрастает в той же последовательности (от ЫОН к СзОН и РгОН). [c.404]


    Шестой период, как и пpeдыдyш e, начинается с двух й-элементов (цезий и барий), которыми завершается заполнение орбиталей с суммой (п + 1), равной 6. Теперь, в соответствии с правилами Клечковского, должен заполняться подуровень 4/ (тг = 4, = 3) с суммой (п + 1), равной 7, и с наименьшим возможным при этом значении главного квантового числа. На самом же деле у лантана (2 = 57), расположенного непосредственно после бария, появляется не 4/-, а 5 -электрон, так что его электронная структура соответствует формуле 15 25 2р 3з 3р 3 °4й 4р 4с °55 5р 5 б5 . Однако уже у следующего за лантаном элемента церия (2 = 58), действительно, начинается застройка подуровня 4/, на который переходит и единственный 5с -электрон, имевшийся в атоме лантана в соответствии с этим электронная структура атома церия выражается формулой 15 25 2р 3з 3р 3й °45 4р 4 °4/ 55 5р б5 . Таким образом, отступление от второго правила Клечковского, имеющее место у лантана, носит временный характер начиная с церия, происходит последовательное заполнение всех орбиталей 4/-подуровня. Расположенные в этой части шестого периода четырнадцать лантаноидов относятся к f-элементам и близки по свойствам к лантану. Характерной особенностью построения электронных оболочек их атомов является то, что при переходе к последующему /-элементу новый электрон занимает место не во внешнем (га = 6) и не в предшествующем (п = 5), а в еще более глубоко расположенном, третьем снаружи электронном слое (п = 4). [c.69]

    Если сопоставить свойства калия и меди, рубидия и серебра, цезия и золота, отличающихся тем, что у атомов первых элементов на предпоследнем уровне 8 электронов, а у вторых 18, нетрудно убедиться в резком различии свойств. Например, сравним некоторые свойства калия и меди (табл. 38). [c.150]

    Большинство металлоорганических связей полярно-кова-лентные. Только у щелочных металлов электроотрицательность достаточно низка, чтобы возможно было образование ионных связей с углеродом, но даже алкиллитиевые соединения по своим свойствам напоминают скорее ковалентные, а не ионные соединения. Простые алкильные и арильные производные натрия, калия, рубидия и цезия представляют собой нелетучие твердые вещества [93], нерастворимые в бензоле и других органических растворителях, в то же время алкильные производные лития — растворимые, хотя, как правило, тоже нелетучие твердые вещества. В таких растворителях, как эфир и углеводороды, алкиллитиевые соединения не существуют в виде мономерных частиц [94]. Наблюдения за понижением точки за- [c.234]

    Простые вещества — литий, натрий, калий, рубидий, цезий и франций — мягкие серебристо-белые металлы (за исключением золотисто-желтого цезия). Франций радиоактивен, стабильных изотопов не имеет. Наиболее долгоживущий изотоп Fг (Т1/2= =20 мин) образуется при облучении урана протонами. Свойства франция изучены недостаточно, так как заметных количеств этого металла накопить не удается. [c.259]

    Калпй К, рубидий НЬ, цезий С8 и франций Рг — полные электронные аналоги. Хотя у атомов щелочных металлов число валентных электронов одинаково, свойства элементов подгруппы калия отличаются от свойств натрия и, особенно, лития. Это обусловлено заметным различием величин радиусов их атомов и ионов. Кроме того, у лития в предвнешнем квантовом слое 2 электрона, а у элементов подгруппы калия 8. Ниже приведены некоторые сведения о литии, натрии и об элементах подгруппы калия  [c.592]

    Рубидий в виде простого вещества представляет собой металл, по физическим свойствам близкий к металлам калию и цезию. Кристаллическая решетка его должна быть ионной и простой. Плотность его равна 1,52. Металл мягкий его можно резать ножом. Температура его плавления должна быть приблизительно средним арифметическим между 63,2° С (температурой плавления калия) и 28,6° С (температурой плавления цезия), т. е. около 45,9 С. Наблюдаемая т. пл. 39° С. В ряду напряжений рубидий должен занимать второе место после цезия, т. е. рубидий должен быть очень сильным восстановителем. Это точно соответствует действительности. [c.102]

    Для структуры соли определяющим является не столько тип формулы, сколько координационные числа катиона и аниона и соотношение их ионных радиусов (разд. 6.4.3). В структуре хлорида цезия каждый ион Сз+ окружен восемью ионами С соответственно каждый ион С " — восемью ионами С5+.. В структуре хлорида нат рия координационные числа катиона и аниона равны шести. В структуре фторида кальция вокруг иона Са + расположено восемь ионов Р по принципу электронейтральности координационное число иона должно быть равно четырем. Координационные числа катиона и аниона можно указывать при написании формулы соединения (по Ниг-гли), например для хлорида цезия СзСЬ/в, для хлорида натрия Na l6/6, для хлорида кальция Сар8/4. Электростатическая модель объясняет в первом приближении ряд физических свойств ионных соединений —твердость, температуры плавления и кипения. [c.348]

    Физические свойства. Простые вещества этой подгруппы представляют собой мягкие, легко сжимаемые и режущиеся ножом металлы. Наиболее твердый из них литий (твердость по шкале Мооса 0,6). Все они в свежем разрезе белого цвета с сильным серебристым блеском, кроме цезия, который имеет золотисто-желтый цвет. Кристаллизуются в форме центрированных в пространстве кубов. По плотности относятся к легким металлам литий, натрий и калий плавают на воде, а литий — даже и на керосине. Все вещества этого ряда имеют сравнительно невысокие температуры плавления и кипения, постепенно уменьшающиеся от лития к цезию. Нужно отметить некоторую особенность для лития он стоит несколько особняком по отношению к своим аналогам, отличаясь более высокими температурами плавления и кипения, чем следовало бы ожидать. [c.232]

    Бунзен и Кирхгоф сами продемонстрировали эффективность этого метода. В 1860 г., исследуя образец минерала, они обнаружили его в спектре линии, которые не принадлежали ни одному из известных элементов. Начав поиски нового элемента, они установили, что это щелочной металл, близкий по своим свойствам натрию и калию. Бунзен и Кирхгоф назвали открытый ими металл цезием (от латинского саез1и5 — сине-серый), так как в спектре этого металла самой яркой была именно синяя линия. В 1861 г. эти ученые открыли еще один щелочной металл, который также назвали по цвету его спектральной линии рубидием (от латинского гиЬ1с1из — темно-красный). [c.103]

    Высокомолекулярный полимер окиси тетрафторэтилена является кристаллическим веществом с Тил == 36 °С. Попытки получения высокомолекулярных сополимеров окисей тетрафторэтилена и гексафторпропилена пока не увенчались успехом. На ионных катализаторах типа фторида цезия образуются только жидкие олигомеры, а при попытке осуществления сополимеризации радиационным методом при низких температурах образуется гомополимер окиси тетрафторэтилена. Перфторированный эластомер с прекрасными свойствами и высокой термической стабильностью синтезирован из а,со-дииодперфтордиэтилового эфира при облучении его УФ-светом в присутствии ртути [40]  [c.512]

    Остановимся в заключение на одном пока еще гипотетическом выводе, к которому пришли в результате изучения свойств металлического цезия при высоких давлениях. Резкое пикообразиое возрастание электрического сопротивления цезия при давлении около 53 200 атм рассматривается некоторыми авторами как указание на то, что при таких давлениях происходит переход 6х электрона атома цезия на одно из вакантных уравнений 4/ и Ы, что должно сопровождаться уменьшением объема. Если подобные эффекты действительно достигаются при таких или близких к ним давлениях, то в недалеком будущем при развитии этих исследований можно ожидать чрезвычайно интересных новых данных о свойствах химических элементов в области очень высоких давлений,, представляющих интерес не только для химических дисциплин, но также и для понимания состояния внутренних частей земного шара, где все вещества находятся под очень высокими давлениями. [c.241]

    Аналог этих соединений в ароматическом ряду — трифенилбор — обладает интересным свойством присоединять щелочные металлы с образованием окрашенных в желтый цвет кристаллических веществ состава (СбН5)зВ- Ме (Ме == Li, Na, К, Rb, s). В связи с этим следует упомянуть тетрафенилборат натрия (торговое название калигност), применяемый для качественного и количественного определения ионов калия, рубидия и цезия он может быть также использован для выделения и открытия алкалоидов и аммониевых солей. [c.188]

    При комнатной и более высоких температурах молекулы, связанные с поверхностью вандерваальсовыми силами, постепенно становятся хемосорбированными [51]. Эта особенность кислорода отчетливо обнаруживается в его способности катализировать (благодаря парамагнитным свойствам) реакцию орто-пара превращения водорода. Будучи адсорбированным на угле при низких температурах, кислород ускоряет эту реакцию, но если адсорбция происходит при более высоких температурах, то он оказывает отравляющее действие [132, 133], Следовательно, для протекания реакции кислорода с поверхностью угля требуется энергия активации. В случае адсорбции на металлах энергия активации может быть ничтожно малой или даже равна нулю. Па поверхности цезия при температуре жидкого воздуха кислород самопроизвольно образует хемосорбционный слой молекул поверхностного окисла. Вполне возможно, что этот хемосорбционный процесс не имеет диссоциативного характера (см. далее настоящий раздел). На пленке молибдена, полученной испарением металла в высоком вакууме, переход от физической адсорбции к хемосорбции требует более высоких температур. Этот переход может быть обнаружен по уменьшению электропроводности пленки в результате хемосорбции кислорода [78]. Аналогичная картина наблюдается при адсорбции кислорода на никеле и платине [53]. [c.83]

    Если взаимодействие кислорода с цезием происходит при комнатной температуре, то, поскольку при этом атомы цезия обладают высоко гюдвижностью, поверх образовавшегося слоя окиси независимо от его толщины возникает полислой атомов цезия. Окись цезия, по-видии/ому, абсорбируется металлическим цезием, т. е, растворяется в нем. Поверхность при этом сохраняет свой первоначальный вид, и ее фотоэлектрические свойства также не изменяются. Лишь после почти полного окисления цезия в результате непрерывной подачи кислорода на иоверхпостн окиси цезия остается очень тонкий слой адсор- [c.104]

    Освоение эффекта Мёссбауэра позволило проводить измерения в пределах 15-го знака. Метод основан на взаимодействии в определенных условиях гамма-квантов с атомными ядрами. Возможность использования этого достижения в химическом анализе уже показана на примере определения олова. Теоретически оправдано применение данного метода для аналитического определения следующих элементов железа, никеля, цинка, германия, мышьяка, рутения, сурьмы, теллура, иода, ксенона, цезия, гафния, тантала, вольфрама, рения, осмия, иридия, платины, золота, таллия, многих лантаноидов и актиноидов. Можно ожидать появления приборов, в датчиках которых используется высокая чувствительность твердых веществ к неуловимым следовым количествам реагирующих о ними веществ. Ведь при хемосорбции всего нескольких сотен атомов последних свойства твердого тела заметно изменяются, Сверхвысокочувствитмьными датчиками могут служить некото [c.11]

    Составьте уравнения реакций гидролиза соединений ХеОр4 и ХеОгр2 и уравнения последующей нейтрализации продуктов реакции с помощью гидроксида цезия. На основе этих процессов обсудите кислотно-основные свойства соединений ксенона (VI). [c.118]

    Физические свойства. Все щелочные металлы серебристого цвета, за исключением цезия, которому свойственна золотисто-желтая окраска. Они очень мягки и легко режутся ножом самый твердый из них литий. Плотность их колеблется от 0,534 до 1,87 следова- [c.35]

    Одно из важных свойств солей ЩЭ — закономерное изменение термической устойчивости в ряду Li— s для соли данного стехиомет-рического состава. Из общих соображений, например основанных на учете поляризующего действия катиона ЩЭ на тот или иной анион, следует, что при наиболее низкой температуре будут разлагаться соли лития (твердый бикарбонат LiH Os настолько неустойчив, что его в отличие от других М НСОз нельзя выделить в твердом состоянии), при наиболее высокой — соли цезия [1]. Однако очень часто эта закономерность существенно усложняется. Причиной является не только изменение кристаллической структуры солей ЩЭ в ряду Li— s, но и разница в составе и свойствах продуктов разложения. Например, если термолиз карбоната лития протекает по простой схеме [c.20]

    Рассматривая свойства элементов периодической системы, мы будем говорить не только о их химических характеристиках, но и радиоактивных свойствах, Поскольку последние часто не менее важны и интересны. В наши дни производство радиоактивных изотопов для некоторых элементов становится более важным, чем производст1во стабильных изотопов. Например, сейчас радиоактивный цезий изготовляется по стоимости продукции на значительно большую сумму, чем добывается из недр земли обычного стабильного цезия. Не менее важна проблема обезвреживания и захоронения радиоактивных отходов, разработка экологически безопасных методов использования радиоактивных изотопов и элементов, например при работе АЭС. [c.215]

    Большое влияние на физические и химические свойства металлов оказывают размеры их атомов. Атомы с малым радиусом, как правило, образуют очень прочную кристаллическую структуру (радиус металлического атома железа, напрнмер, только 1,25 А), что приближает его к неметаллам и приводит к образованию структуры, напоминающей атомную. Напротив, металлы, образованные большими атомами, чаще всего химически п термически более активны. Примером могут служить цезий (2,74 А), барий (2,25 А) и лантан (1,88 А), имеющие максимальные размеры металлического рад11уса и относящиеся к числу самых активных. [c.254]


Смотреть страницы где упоминается термин Цезий свойства: [c.14]    [c.307]    [c.598]    [c.39]    [c.21]    [c.123]    [c.19]    [c.43]    [c.35]    [c.7]   
Химия и технология соединений лития, рубидия и цезия (1970) -- [ c.72 , c.82 , c.89 , c.93 , c.95 , c.97 , c.101 , c.103 , c.108 , c.123 , c.139 ]

Общая и неорганическая химия (1981) -- [ c.43 , c.112 , c.158 , c.299 , c.308 ]

Анализ минералов и руд редких элементов (перевод с дополнениями с третьего английского издания) (1962) -- [ c.52 ]

Основы общей химии Том 3 (1970) -- [ c.6 , c.262 , c.263 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий



© 2024 chem21.info Реклама на сайте