Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Квантовые числа электронов в атоме. Принцип Паули

    При заполнении электронных слоев и оболочек атомы подчиняются 1) принципу наименьшей энергии, согласно которому электроны сначала заполняют вакантные орбитали с минимальной энергией 2) принципу Паули 3) правилу Гунда — на вырожденных орбиталях суммарное спиновое число электронов должно быть максимальным. В квантовых ячейках с одинаковой энергией заселение электронами происходит так, чтобы атом имел наибольшее число неспаренных электронов. Это отвечает нормальному состоянию атома (минимум энергии). Рассмотрим связь между электронным строением атомов и положением элементов в короткой 8-клеточной Периодической сис ме (см. форзац). У каждого следующего элемента Периодической системы по сравнению с предыдущим на один электрон больше. Наиболее прост первый период системы, состоящий лишь из двух элементов. У водорода единственный электрон заселяет наинизшую по энергии орбиталь 1 , а у гелия на этой орбитали два электрона с антипарал-лельными спинами. Гелием заканчивается первый период системы и исчерпаны все вариации квантовых чисел при п = I. Таким образом, у атома гелия полностью формируется наиболее близкий к ядру А -слой. [c.40]


    Насыщаемость ковалентной связи выражается в ограничении числа валентных связей, которые может дать данный атом. Например, азот может притянуть три атома водорода с образованием молекулы NHз, молекул же NH4, ЫНь и т. д. не существует. Согласно квантово-механическим соображениям в образовании связи могут участвовать только неспаренные электроны атома число их определяет валентность элемента. В простых случаях число неспаренных электронов в атоме находится с помощью принципа Паули (см. стр. 27) и правила Гунда (см. стр. 33), в более сложных рассматривается возможность гибридизации волновых функций (см. 9). [c.19]

    Мы видим, что литий, как и водород, является одновалентным. Следующий атом — Ве (2 = 4) в согласии с принципом Паули характеризуется следующими квантовыми числами (15)"(2з)". В этом основном состоянии валентность бериллия равна нулю. Однако значению п = 2 отвечает не только I = О (электронов), но и / = 1. [c.456]

    Кроме длины и энергии важными характеристиками химической связи являются насыщаемость и направленность. Однако эти свойства присущи лишь ковалентной связи. Ионная связь, природа которой обусловлена ненасыщенным и пространственно симметричным электростатическим полем центрального иона, ненасыщена и не имеет какого-либо определенного направления. Насыщаемость ковалентной связи выражается в ограничении числа валентных связей, которые может дать данный атом. Например, азот притягивает три атома водорода с образованием молекул ЫНз, молекул же МН4, ЫН5 и т. д. не существует. Согласно квантово-механическим соображениям в образовании связи могут участвовать только неспаренные электроны атома число их определяет валентность элемента. В простых случаях число неспаренных электронов в атоме находится с помощью принципа Паули и правила Гунда, в более сложных рассматривается возможность гибридизации волновых функций. Направленность связей объясняет стереохимию молекул, которая начала развиваться после того как Ле-Бель и Вант-Гофф (1874) выдвинули важнейший тезис о тетраэдрическом расположении валентностей углерода. [c.18]

    Электронной конфигурацией называется распределение электронов атома по различным квантовым состояниям. Согласно принципу наименьшей энергии электрон, присоединяемый к атому, занимает в нем свободный уровень с наименьшей энергией. Если бы не запрет Паули (см. 5), то все электроны в любом атоме занимали бы уровень 15. Но вследствие запрета Паули число электронов, занимающих данный уровень, строго ограничено. Оба указанных фундаментальных условия составляют принцип построения электронных конфигураций атомов и молекул. [c.36]


    Точный расчет волновых функций многоэлектронных атомов становится затруднительным вследствие большого числа электрон-электрон-ных отталкиваний, которыми мы до сих пор для простоты пренебрегали. В 1927 г. Хартри для разрешения этой проблемы при расчете волновых функций атомов предложил метод, который теперь известен как метод самосогласованного поля (ССП) и который позднее был видоизменен Фоком с учетом принципа Паули. В этом методе предполагается, что каждый электрон движется в сферически-симметричном потенциальном поле, создаваемом ядром и усредненными полями всех других электронов, за исключением рассматриваемого. Расчет начинают с приближенных волновых функций для всех электронов, кроме одного. Определяют средний потенциал, который обусловлен другими электронами, а затем решают уравнение Шредингера для этого одного электрона, используя средний потенциал, обусловленный другими электронами и ядром. С полученной волновой функцией проводят более точный расчет среднего поля и затем из уравнения Шредингера определяют приближенную волновую функцию для второго электрона. Этот процесс продолжают до тех пор, пока набор вычисленных волновых функций будет незначительно отличаться от предыдущего набора. Тогда говорят, что данный набор волновых функций самосогласован. Для расчета волновых функций многоэлектронного атома требуются трудоемкие вычисления. Обсчет какого-либо конкретного атома методом самосогласованного поля дает ряд атомных орбиталей, каждая из которых характеризуется четырьмя квантовыми числами и характеристической энергией. В противоположность атому водорода в этом случае орбитальные энергии зависят как от главного квантового числа п, так и от орбитального квантового числа I. [c.396]

    Принцип Паули и принцип минимального значения энергии в основном состоянии атома позволяют сформулировать закон заполнения возможных энергетических состояний в атомах с большим числам электронов Если имеется только один электрон, то он должен находиться в состоянии 15, где главное квантовое число равно единице и значение энергии наименьшее В таком же состоянии может находиться и второй электрон, причем электроны должны иметь разные спиновые квантовые числа, т е их спины должны быть направлены противоположно Поскольку 15-состоянию соответствует только один набор пространственных квантовых чисел, то больше электронов в этом состоянии быть не может Такая ситуация отвечает атому Не Следующий атом (Ь1) имеет три электрона Этот третий электрон должен быть обязательно в одном из состояний с главным квантовым числом, равным двум При дальнейшем заполнении энергетических уровней, те при переходе от атома Ь1 к атому Ые, следует иметь в виду следующее Состояние с главным квантовым числом, равным двум, четырехкратно вырождено Следовательно, этому со- [c.49]

    Представления Льюиса об обобществленной электронной паре имеют большой смысл с точки зрения квантовой механики. Например, в молекуле водорода каждый атом имеет два электрона. В соответствии с принципом Паули, эти электроны должны различаться одним из квантовых чисел — спиновым. В противном случае у каждого атома водорода будут два электрона, отличающихся не четырьмя, а тремя квантовыми числами. [c.86]

    В методе МО молекула рассматривается с той же точки зрения, что и атом. Предполагается, что электроны в молекуле находятся на молекулярных орбиталях, охватывающих все ядра в молекуле. В отличие от атомной орбитали (АО), МО является многоцентровой орбиталью. Для построения волновой функции молекулы все ее электроны распределяют по молекулярным орбиталям с наименьшей энергией, учитывая ограничения, налагаемые принципом Паули. Со1 ласно этому принципу на орбитали не может находиться два электрона, у которых все четыре квантовых числа были бы одинаковые. Поэтому на одной МО может находиться только два электрона, различающиеся спиновыми квантовыми числами. [c.24]

    МИ. Итак, каждый электрон в атоме характеризуется четырьмя квантовыми числами, причем атом не может иметь электронов, у которых все четыре квантовых числа были бы одинаковыми. Это правило известно под названием принципа Паули. [c.11]

    В соответствии с законом, который получил название принцип Паули, для полного описания электрона необходимо использовать четыре квантовых числа, позволяющие представить все электроны любого атома в виде электронной конфигурации. Таким образом, зная заряд ядра 2, массовое число А и квантовые числа, можно охарактеризовать любой атом периодической системы. Различные виды атомов получили общее название — нуклиды. Нуклиды с одинаковыми значениями Z, но различными значениями А и различным числом нейтронов в ядре (обозначают /) называют изотопами. Большинство элементов существует в природе как смесь изотопов. [c.16]


    Тот факт, что кислород и в гомеополярных соединениях никогда не проявляет валец,тности больше двух, с точки зрения теории атомной связи объясняется следуюпщм образом в атоме кислорода имеется шесть внешних электронов, находяш ихся на энергетическом уровне с главным квантовым числом п = 2. Согласно принципу Паули (см. стр. 145 и сл.), на таком уровне может находиться максимум восемь электронов. Так как обычно каждая гомеополярная связь образуется парой электронов, для которой каждый из связанных атомов представляет один электрон, то при образовании двух главных валентностей число внешних электронов атома кислорода доходит до восьми, т. е. до максимально возможного числа. Чтобы образовалось более двух валентных связей, по крайней мере один электрон должен подняться с уровня с главным квантовым числом 2 на уровень с главным квантовым числом 3. Как следует из спектральных термов кислорода, для этого надо затратить очень большую энергию, а именно около 210 ккал г-атом. В атомах аналогов кислорода, наоборот, ни одному электрону не надо подниматься на уровень с большим главным квантовым числом, чтобы стало возможным образование более двух гомеополярных главных валентных связей, так как в силу большего значения главного квантового числа внешние энергетические уровни этих атомов могут содержать больше восьми электронов. Впрочем, и в атомах гомологов кислорода, чтобы они проявили валентность больше двух, электроны должны быть подняты на более высокий энергетический уровень, но не с большим главным [c.737]

    Силы притяжения у ионных твердых веществ (например хлористого натрия) преимущественно кулоновского типа, т. е. сила притяжения изменяется обратно пропорционально квадрату расстояния между ионами разных знаков. Однако притяжение не является чисто кулоновским, в нем принимают участие также поляризационные силы и силы Ван-дер-Ваальса в некоторых случаях они проявляются в виде изменений решетки. Металлы характеризуются очень высокой проводимостью электричества и тепла и очень высоким коэфициентом отражения и поглощения света. Их можно рассматривать как решетку положительных ионов, заряд которых нейтрализован отрицательными электронами, равными по числу сумме зарядов этих ионов. Эти свободные электроны принадлежат всей решетке, а не какому-нибудь отдельному атому. По принципу Паули лишь два электрона (исключая спин) могут занимать один квантовый уровень и поэтому число уровней энергии огромно, так как оно равняется половине числа свободных или проводящих электронов. В неметаллических соединениях атомы связаны в молекулы ковалентными связями, образованными парами электронов. Этим типом связи соединены углерод, водород, азот и другие атомы в огромном числе органических молекул, он играет роль также в образовании многих Вернеровских координационных соединений, особенно металлов второй и третьей групп. Связь у электронной пары может быть слабой, как в Ja, поможет быть и более прочной, чем в—С —С—или—С — Н, или чем ионные [c.89]

    Металлы и полупроводники отличаются от твердых электролитов тем, что носителями тока у них являются электроны, обобществленные между всеми атомами кристаллической решетки. В разреженном газе каждый атом можно рассматривать как самостоятельную квантовую систему, считая, что в пределах атома, согласно принципу Паули, не бывает двух электронов с тождественными четырьмя квантовыми числами, но повторение одинаковых квантовых состояний для электронов разных атомов допустимо. Твердое же тело является единой системой, в которой все электроны должны быть в различных состояниях. При сближении N атомов одинаковые прежде электронные уровни расщепляются на ряд близких, но различных уровней, образующих почти сплошную полосу, когда N велико. При этом полосы, соответствующие различным энергетическим уровням свободного атома, могут частично перекрываться, как это показано на рис, I. 5. [c.22]

    А что же произойдет, если откуда-нибудь появится еще третий атом натрия и тоже захочет войти в этот коллектив Ведь и он обладает электронами с теми же квантовыми числами Это означает, что и теперь нужно было бы нарушить принцип Паули. Если я правильно понял и атомы действительно могут изменять энергетические уровни своих электронов, то каждому основному уровню свободного атома будут соответствовать три новых, очень близких по энергии уровня в объединении из трех атомов. И сколько это может продолжаться В принципе могут собраться вместе пять, шесть, сто, тысяча, миллион, миллиард [c.215]

    По причине своего негативного характера этот принцип называют иногда запретом Паули. Этот запрет означает, что любым двум электронам атома запрещено быть во всех отношениях похожими друг на друга, что все они дифференцированы и отличаются друг от друга а) либо нахождением в разных квантовых (энергетическ х) слоях (то есть различным общим запасом энергии, различным зна-че 1ием главного квантового числа п и различным принципиальным удалением от ядра) б) либо нахождением в р а з-ных энергетических подуровнях (то есть различием в энергетической характеристике, различием в значениях побочного квантового числа к, различными формами орбит) в) либо нахождением в разных энергетических состояниях (то есть еще некоторым, хотя и менее значительным, различием в энергетической характеристике, различными дозволенными поворотами орбит в магнитном поле) г) либо своим спином как особой качественной характеристикой еще не вполне выясненной природы. Принцип Паули по существу перекликается с известным выражением В. И. Ленина электрон так же неисчерпаем, как и атом (можно ведь понимать под неисчерпаемостью многообразие его качественных характеристик в разных условиях, то есть на различном удалении от ядра). Этот принцип поясняет индивидуал ьность элементов и дискретность свойств их (порционный, скачкообразный характер изменения) ведь у каждого элемента имеется свое особенное распределение электронов по слоям, по подуровням, по состояниям , по спину , а также (как это будет показано в гл. 10) свой особенный состав ядра. [c.122]

    Рассмотрим какой-либо атом в магнитном поле, достаточно сильном для того, чтобы все электроны этого атома ориентировались независимо в соответствии с этим нолем. Тогда состояние каждого электрона будет описываться определенным набором квантовых чисел для каждого электрона можно указать значения главного квантового числа п определенной орбитали, квантового числа орбитального момента Количества движения I, орбитального магнитного квантового числа т.1 (указывающего составляющую орбитального момента количества движения в направлении поля), спинового квантового числа (которое для каждого электрона имеет значение /г) и спинового магнитного квантового числа (которое может быть равно + /2, что соответствует приближенной ориентации спина в направлении поля, или — 2, что соответствует приближенной ориентации спина в противоположном направлении). Открытый Паули принцип исключения можно сформулировать следующим образом атом не может существовать в таком квантовом состоянии, при котором два электрона данного атома имели бы одинаковый набор квантовых чисел. [c.116]

    Ни одна из приведенных на схеме электронных структур, которые можно приписать атому С, не противоречит ни принципу Паули (число электронов в каждой ячейке не превышает двух), ни правилу Клечковского (квантовые ячейки данного подуровня вырождены, т. е. энергетически равноценны). Опыт, однако, говорит в пользу структуры, изображенной на схеме 2. При исследовании атомных спектров было выяснено правило (правило Хунда), согласно которому электроны в пределах данного подуровня в атоме располагаются так, что суммарный спин их оказывается максимальным. [c.66]

    Согласно принципу Паули, атом пе может иметь двух и более электронов, все квантовые числа которых одинаковы. Поэтому в соответст- [c.21]

    Молекула в методе МОЛКАО представляет собой систему, аналогичную атому. Так же, как в атоме, в молекуле орбитали отвечают определенным квантовым числам и молекулярные орбитали заполняются в соответствии с принципом Паули, т. е. на каждой орбитали могут находиться лишь два электрона с противоположными спинами. Особенностью молекулярных орбиталей является то, что они в общем случае многоцентровые, т. е. электрон движется в поле нескольких ядер. Если волновая функция Эv eктpoиa у ядра А есть фд, а у ядра В — фв, то при образовании связи волновая функция системы будет выражаться линейной комбинацией фд и фв- Пусть система состоит из двух протонов и одного электрона Н (А-В). Для отыскания молекулярной волновой функции испытаем функции ф1-Ьф2 и фп—фг- [c.184]

    Метод валентмых свя- В 1927 г. Гейтлер и Лондон на примере образования молекулы водорода из свободных атомов впервые предложили научно обоснованную теорию химической связи. Они решили, хотя и приближенно, уравнение Шредингера для молекулы водорода, используя при этом принцип Паули. Оказалось, что образование молекулы водорода из свободных атомов может осуществиться путем обобществления обоими атомными ядрами двух электронов свободных атомов, причем оба электрона должны иметь противоположно направленные спиновые моменты. Этот вывод в дальнейшем привел к рассмотрению образования любых молекул из атомой путем обобществления двумя атомными ядрами двух электронов по одному от обоих химически связывающихся атомов. Эта обобществленная двумя атомными ядрами пара электронов осуществляет химическую связь между атомами и ее назвали связью ковалентной. В формировании этой химической связи должны принимать участие так называемые неспаренные электроны свободных атомов — электроны с одинаковыми значениями целочисленных квантовых чисел, но с противоположным по знаку спиновым квантовым числом. Таким образом,, число связей, которые может сформировать атом, равно числу его неспзренных электронов. В соответствии с этим валентнр- [c.26]

    Атом Ы имеет третий электрон на 25-уровне полный спин равен /а, следовательно, основное состояние харак теризуется как 5. На рис. 16 показаны основные состоя ния атомов элементов от Н до В. Несколько сложнее ситуация в случае углерода. Здесь мы имеем два элек трона на 2р-уровне. Как было показано выше, этот уро вень может расщепляться на три различных уровня с т, равным 1, О и —1 соответственно. Теперь мы должны выяснить все способы размещения двух электронов на этих уровнях. На рис. 17 приведены все комбинации, не противоречащие принципу Паули. Внизу даны результирующие спиновые и магнитные квантовые числа для [c.64]

    Образование комплексных соединений всегда происходит с участием -орбиталей. Последние могут существовать только для уровней с главным квантовым числом > 3. При этом оказывается, что участвовать в образовании координационных связей в комплексе могут как внутренние, т. е. находящиеся ниже валентной оболочки, так и внешние -орбитали. Примером последнего является молекула 8Ре, где внешний электронный слой атома 8 в основном состоянии имеет конфигурацию (Зх) (3/>) -Так как из четырех электронов, размещенных на трех орбиталях — Рх,Ру и Р , два обязательно должны быть спарены (принцип Паули), атом серы в основном состоянии является двухвалентным потому, что в образовании связей могут принимать участие только песпаренные электроны. То, что указанное соединение тем не менее образуется, является следствием двукратного возбуждения атома серы в состояние (Зх) (Зр) (3 ) . Объясняется такая возможность двумя причинами. Во-нервых, возмущение в поле окружающих молекул приводит к тому, что внешняя -орбиталь оказывается сильно сжатой и энергетически мало отличается от существующей внешней оболочки. С другой стороны, образование связующих внешних орбиталей с примесью -орбиталей, как впервые показал Полинг [15], приводит к образованию очень четко направленных и сильных связей. [c.97]

    Сказанное легко и удобно применять к атому, имеющему один-единственный электрон — водородному. Первоначально, кстати, создатели квантовой механики и занимались преимущественно водородом. Но у любого другого атома электрон не один их столько же, сколько протонов в ядре, т. е. их число соответствует порядковому номеру соответствующего элемента в таблице Менделеева. Не останавливаясь на других, весьма важных подробностях квантового описания атома, их можно найти во многйх книгах ), обсудим лишь важнейший вопрос сколько электронов в нем может обладать совершенно одинаковой энергией Не более двух. Сейчас придется ввести еще один термин — орбиталь. Убедительная просьба не путать орбиталь е орбитой. Орбиталь—это не линия, по которой движется мифический точечный электрон, а часть пространства, в которой сосредоточен весь заряд этой частицы-волны, соответственно и вся (стоит оговориться практически вся) вероятность где-либо ее обнаружить. Электроны, располагающиеся на одном энергетическом уровне и обладающие общей орбиталью, тождественны во всех отношениях, кроме одного ориентация вектора спина ) у них противоположна (принцип Паули). Спин электрона так же, кстати, как и протона, и нейтрона, может принимать лишь два значения + /2 и —V2 Обитание же электронов в рамках общей орбитали, несмотря на их одинаковый заряд, энергетически выгодно. Это кажется парадоксальным, но не стоит забывать, что они находятся в особых, не подвластным нашим житейским меркам условиях. [c.83]

    Тот факт, что кислород и в гомеополярных соединениях никогда не проявляет валентности больше двух, с точки зрения теории атомной связи объясняется следующим образом в атоме кислорода имеется шесть внешних электронов, находящихся на энергетическом уровне с главным квантовым числом и = 2. Согласно принципу Паули (стр. 130 и сл.), на таком уровне может находиться максимум восемь электронов. Так как обычно каждая гомеополярная связь образуется парой электронов, для которой каждый из связанных атомов предоставляет один электрон, то при образовании двух главных валентностей число внешних электронов атома кислорода доходит до восьми, т. е. до максимально возможного числа. Чтобы образовалось более двух валентных связей, по крайней мере один электрон должен подняться с уровня с главным квантовым числом 2 на уровень с главным квантовым числом 3. Как следует из спектральных термов кислорода, для этого надо затратить очень большую энергию, а именно около 210 ккал г-атом. В атомах аналогов кислорода, наоборот, ни одному электрону не надо подниматься на уровень с ббльшим главным квантовым числом, чтобы стало возможным образование более двух гомеополярных главных валентных связей, так как в сипу большего значения главного квантового числа внешние энергетические уровни этих атомов могут содержать больше восьми электронов. Впрочем, и в атомах аналогов кислорода, чтобы они проявили валентность больше двух, электроны должны быть подняты на более высокий энергетический уровень, но не с большим главным квантовым числом, а всего лишь на уровень с большим побочным квантовым числом, а именно на -уровень. Если образуются две валентные связи, такого перехода электронов не происходит, поскольку, как следует из спектров, и у кислорода и у его аналогов основному состоянию атомов соответствует триплетный терм ( Рг)-Это значит, что атомы кислорода и его аналогов в основном состоянии содержат два неспаренных электрона. Следовательно, они могут проявлять валентность два, не требуя какой-либо энергии возбуждения, кроме энергии, необходимой для распада молекул на атомы, тогда как для проявления ими высших валентностей такая энергия возбуждения необходима. Отсюда понятно, почему в чисто гомеополярных соединениях и аналоги кислорода проявляют в основном валентность 2. [c.660]

    Решение. Электронную структуру 15 252р имеет атом бор,а Значения квантовых чисел для электронов атома бора надо определять с учетом принципа Паули, согласно которому в атоме не может быть даже двух электронов, у которых все четыре квантовых числа были бы одинаковыми. 1-й энергетический уровень атома бора содержит два электрона в 5-состоянии. Эти электроны характеризуются следующим набором квантовых чисел 1, О, О, 1/2. Электроны в -состоянии второго энергетического уровня имеют значения квантовых чисел 2, О, О, 1/2. [c.10]

    Пятый электрон в нейтральном атоме бора уже не может быть электроном 2s (по принципу Паули не существует более двух электронов с /1 = 2, Ij — Q). Он должен иметь / =1, т. е. нормально располагаться в состоянии 2р. Так как нормальное состояние иона бора есть состояние Sq (так же как Bel), а следовательно, характеризуется тем, что для него квантовые числа S, L, J равны нулю, то результирующее состояние нейтрального атома бора определяется движением его самого последнего — пятого — электрона. Отсюда следует, что BI должен обладать простым дублетным спектром, что и наблюдается на опыте. Однако этот дублетный спектр отличается от дублетных спектров щелочных металлов тем, что его нормальным термом является терм р . Обнаруженные в крайней ультрафиолетовой части спектры СII, NIII, ОIV,. .. показывают, что эти ионы построены аналогично нейтральному атому бора. [c.230]


Смотреть страницы где упоминается термин Квантовые числа электронов в атоме. Принцип Паули: [c.24]    [c.24]    [c.18]    [c.450]    [c.243]    [c.13]    [c.215]   
Смотреть главы в:

Неорганическая химия -> Квантовые числа электронов в атоме. Принцип Паули




ПОИСК





Смотрите так же термины и статьи:

Квантовые числа

Квантовые числа и электронные конфигурации атомов. Принцип Паули

Паули

Паули принцип

Числа атомов

Электрон в атомах

Электрон квантовые числа

Электрон число в атоме



© 2025 chem21.info Реклама на сайте