Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия главных валентных связей

Рис. 10. Схема изменений энергии главных валентных связей полимеров при механодеструкции Рис. 10. <a href="/info/711957">Схема изменений</a> энергии главных валентных связей полимеров при механодеструкции

    Энергия водородной связи обычно выше энергии дисперсионной, индукционной и электростатической связи, но значительно меньше энергии главных валентных связей (табл. 3). [c.18]

    Если рассмотреть две связанные межмолекулярными силами цепи Б твердом полимере на участке, на котором они взаимно ориентированы строго параллельно, то внутренние напряжения, возникающие при деформации под действием внешней силы, распределяются на химические главные валентные связи в цепях и на межмолекулярные связи между цепями. Механизм разрушения такой системы под действием внутренних напряжений (может произойти разрыв химической связи или проскальзывание с разрывом межмолекулярных связей) зависит от соотношения энергии химической главной валентной связи в основной цепи и суммы энергий межмолекулярных взаимодействий на данном участке контакта между цепями. [c.43]

    Обсуждение гибкости растворенных цепных молекул (раздел Б-1) было начато с допущения о том, что вытянутая или спиральная конформация, принимаемая полимером в кристаллическом состоянии, представляет форму изолированной макромолекулы, обладающую минимальной энергией. Если поворотная изомерия цепи главных валентностей связана со сравнительно небольшими изменениями энергии, то прирост энтропии в результате увеличения числа разрешенных конформаций приведет к осуществлению очень большого числа конформаций, и в таком [c.118]

    С точки зрения правила фаз раствором называется многокомпонентная гомогенная часть системы, состав которой в известных пределах может непрерывно и произвольно меняться. В этом определении подчеркиваются два основных признака любого истинного раствора его гомогенность и переменность состава. Гомогенность раствора обеспечивается равномерным распределением молекул одного вещества среди молекул другого. Переменность состава раствора надо понимать в том смысле, что хотя растворы образуются в результате химического взаимодействия компонентов (Д. И. Менделеев), но в отличие от химических соединений они не подчиняются закону постоянства состава. Поэтому относительные количества веществ в растворе могут быть любыми и ограничены только их взаимной растворимостью. Растворы отличаются от химических соединений также характером и величинами энергии связи между частицами. Химическое соединение образуется за счет мощных валентных связей, а раствор, главным образом, за счет гораздо более слабого межмолекулярного взаимодействия. Но возможны переходные случаи, тогда по величинам энергий связи трудно бывает отличить раствор от химического соединения. [c.178]


    Все элементы второй главной подгруппы, кроме бериллия, обладают ярко выраженными металлическими свойствами. В устойчивом (нормальном) состоянии они являются нульвалентными, так как их внешние электроны на -подуровне спарены. Но это не значит, что они химически не деятельны. Энергия возбуждения у них мала (например, у атома бериллия 259,4 кДж) и полностью перекрывается энергией образования химических связей, поэтому один из 2.5-электронов может перейти в 2/7-состояние. В этом случае атом будет иметь два неспаренных электрона, и, следовательно, он может проявлять валентность, равную двум. [c.77]

    В полимерах атомы главной валентной цепи связаны между собой ковалентными химическими связями, характеризующимися высокой энергией, а сами цепи — значительно более слабыми силами межмолекулярного взаимодействия. Межмолекулярные связи непрерывно распадаются и возникают под действием тепловых флуктуаций. Нестабильность межмолекулярных связей создает благоприятные условия для непрерывного теплового движения участков макромолекул, что приводит к непрерывному изменению формы макромолекулы, т. е. ее конформации. [c.121]

    Метод молекулярных орбит не противоречит рассматривавшемуся выше методу валентных связей, а скорее дополняет его. Для трактовки одних свойств молекул (например, пространственного строения) пригоднее метод валентных связей, других (например, электронных спектров) — метод молекулярных орбит. Последний менее нагляден, но легче поддается математической обработке, а потому более удобен для попыток теоретического расчета некоторых свойств, характерных для молекул в целом (например, энергий возбуждения). Вместе с тем один из главных недостатков орбитальной модели состоит в том, что она не в состоянии правильно — в количественном отношении — предсказать прочность химической связи (У о л). Метод молекулярных орбит более гибок в смысле возможности введения тех или иных специальных допущений (например, трехцентровых орбит), предназначенных для истолкования частных особенностей некоторых молекулярных структур. Однако общей теоретической основой химической практики был и остается метод валентных связей, наглядным выражением которого являются структурные формулы веществ. Только с их помощью удавалось и удается успешно решать задачи целенаправленного химического синтеза. [c.233]

    Результаты квантово-механического расчета молекулы водорода методом валентных связей с использованием различного числа волновых функций показывают, что точность повышается при увеличении числа членов в сумме (IV. 16). Главные положения МВС можно сформулировать так 1) ковалентную связь образуют два электрона с антипараллельными спинами 2) при образовании ковалентной связи происходит перекрывание волновых функций электронов и между взаимодействующими атомами увеличивается плотность электронного облака (15—20%), что приводит к уменьшению энергии системы 3) ковалентная связь направлена в сторону максимального перекрытия электронных облаков взаимодействующих атомов (критерий наибольшего перекрывания). [c.71]

    Одной из самых интригующих и перспективных задач современной науки является изучение механизма и движущих сил процессов, происходящих в живом организме. Решение этих проблем позволит перейти на качественно новый уровень развития фундаментальных и прикладных наук, таких как медицина, биотехнология и фармакология. В области химических наук толчком к началу исследования процессов молекулярного узнавания в биосистемах послужило открытие в конце бО-х годов искусственных молекул (краун-эфиров), способных к специфическому распознаванию других химических частиц. В последующие годы бурное развитие получил синтез соединений, способных к самоорганизации. На рубеже 80-90-х годов сформировалась новая область знаний, получившая название "супрамолекулярная химия". У ее истоков стоят работы трех нобелевских лауреатов 1987 года -Ч. Педерсена, Д. Крама и Ж.-М. Лена [1-3]. По определению Лена [4], супрамолекулярная химия - это химия межмолекулярных связей, изучающая ассоциацию двух и более химических частиц, а также структуру подобных ассоциатов. Она лежит за пределами классической химии, исследующей структуру, свойства и превращения отдельных молекул. Если последняя имеет дело главным образом с реакциями, в которых происходит разрыв и образование валентных связей, то объектами изучения супрамолекулярной химии служат нековалентные взаимодействия водородная связь, электростатические взаимодействия, гидрофобные силы, структуры "без связи". Как известно, энергия невалентных взаимодействий на 1-2 порядка ниже энергии валентных связей, однако, если их много, они приводят к образованию прочных, но вместе с тем гибко изменяющих свою структуру ассоциатов. Именно сочетание прочности и способности к быстрым и обратимым изменениям - характерное свойство всех биологических молекулярных структур нуклеиновых кислот, белков, ферментов. [c.184]


    Расчеты, проведенные для предельно ориентированных полимеров достаточно большой молекулярной массы, показали, что значения близки к энергии химической связи между атомами главной цепи макромолекулы и совпадают со значением энергии активации термической деструкции соответствующего высокомолекулярного соединения. Следовательно, в этих условиях, когда в максимальной степени проявляется совместное действие межмолекулярных сил и суммарный эффект их превосходит прочность валентных связей, [c.415]

    Рассмотрим предположительный механизм разрыва эластомера с развитой пространственной структурой. Выше было показано, что в рассматриваемом случае необходимо одновременно преодоление связей обоих типов. Напряжение я в месте роста области разрыва так же, как и номинальное напряжение, складывается из противодействующих разрыву сил главных валентностей Стх и межмолекулярных сил а . Величина ст, зависит от температуры опыта, скорости деформации, степени набухания образца. Рассматривая разрушение и восстановление межмолекулярных связей в результате теплового движения, мы пришли к выводу, что а, , аналогично противодействию вязкому течению должно быть обратно пропорционально вероятности разрыва связей флуктуациями тепловой энергии и прямо пропорционально скорости деформации материала в месте распространения разрыва связей под действием напряжения или, что то же, скорости распространения надрыва о. То же самое относится и к химическим связям, которые значительно реже по сравнению с межмолекулярными связями разрушаются под действием теплового движения кинетических единиц. [c.183]

    Если сопротивление разрушению определяется противодействием сил главных валентностей, то, естественно, что достигнуть определенную прочность можно уже при синтезе полимеров с прочными химическими связями в основной цепи. Чем прочнее эти связи, чем больше значение энергий этих связей, тем прочнее должен быть полимер. Разрыв химических связей обуславливает прочность материала только при достаточно больших значениях молекулярный массы. При этом энергия суммарного противодействия отрыву элементов структуры друг от друга за счет межмолекулярного взаимодействия должна быть больше энергии рвущихся химических связей [297, с. 314]. Увеличение числа химических связей, несущих нагрузку, сопровождается увеличением прочности материала также в случае трехмерных структур, содержащих химические связи. Это происходит, например, при химическом сшивании молекул полимера. В дальнейшем будет показано, что ориентация анизодиаметричных элементов структуры способствует преимущественному разрыву химических связей. [c.235]

    Этот минимум определяется соотношением энергии связи атомов в цепях главной валентности и энергии связи соседних цепей. При очень большой длине цепи, состоящей, например, из нескольких сот глюкозных единиц, прилежащие цепи связаны друг с другом очень большим числом связей [c.365]

    Гиббс и Ди Марцио рассмотрели систему, состоящую из Пх цепей линейного полимера, каждая из которых состоит из X мономерных звеньев. Под словом мономер здесь понимается некоторая структурная величина, способная занимать в решетке одно определенное положение. Обычно это один атом, находящийся в основной цепи, с присоединенными к нему боковыми группами при условии, что последние достаточно малы. Далее делается допущение, что возможны любые конформации цепи в решетке, узлы которой имеют размер, не превышающий размеры одного звена. Предполагается, что в решетке есть вакансии, число которых составляет По. Если число главных валентностей каждого атома, находящегося в основной цепи, равно 2 (например, у углерода 2=4), то число возможных (преимущественно низкоэнергетических) ориентаций валентных связей составляет 2—1. Предполагается, что энергия б1 соответствует одной из этих ориентаций, а энергия ег — каждой из [c.99]

Рис. 4. Схема изменений энергии главных валентных связей полимеров при механодеструкцин ио, 1 1 — энергия связей до л после деструкции — энергия образования свободных радикалов — энергия активации механически активированного химического обрыва. Рис. 4. <a href="/info/711957">Схема изменений</a> энергии главных валентных связей полимеров при механодеструкцин ио, 1 1 — <a href="/info/5059">энергия связей</a> до л после деструкции — <a href="/info/6525">энергия образования свободных</a> радикалов — <a href="/info/1797842">энергия активации механически</a> <a href="/info/696916">активированного химического</a> обрыва.
    По Шмиту между макромолекулами целлюлозы и диспергирующей средой наблюдаются в процессе облучения относительные взаимные перемещения, приводящие к тому, что макромолекулы разрываются под влиянием вибрации Возникающие между линейными молекулами силы трения лежат, по расчетам Шмита, в области энергии главных валентных связей, так что механический разрыв молекулы вполне вероятен. [c.132]

    Ниже расоматривается возникновение критических напряжений для реализации механокрекинга только в самом общем элементарном упрощенном виде. В двух связанных межмоле-кулярными силами цепях твердого полимера на участке, на котором они взаимно ориентированы и строго параллельны, внутренние напряжения, возникающие при деформации под действием внешней силы, распределяются на химические главные валентные связи в цепях и на межмо-лекулярные связи между цепями. Механизм разрушения такой системы под действием внутренних напряжений (может произойти разрыв химической связи или проскальзывание с разрывам межмолекулярных связей) зависит от соотношения энергии химической главной валентной связи в основной цепи и суммы энергии межмолекулярных взаимодействий на данном участке контакта между цепями с учетом закономерностей изменения сил взаимодействия с расстоянием. [c.52]

    Выше отмечалось, что при прочих равных условиях вероятносю механокрекинга определяется соотношением сил межмолекуляр-ного взаимодействия и прочности химических связей в основной "цепи. Таким образом, можно было бы предположить, что эффективность механокрекинга при прочих равных условиях и достаточной интенсивности механических сил будет выше для полимеров с сильным межмолекулярным взаимодействием. Это в известной степени оправдывается при механодеструкции полимеров, находящихся в высокоэластическом состоянии, когда перемещение цепей под действием внешних сил во времени и пространстве позволяет реализовать различные соотношения между энергией межмолекулярных и главных валентных связей цепи. Тогда вероятность ме-ханокрекияга можно оценить, исходя из этих соотношений. По-видимому, осложнения возможны только в связи с перепутыванием цепей, образованием петель и зацеплений, препятствующих их взаимному перемещению, независимо от энергии межмолекулярного взаимодействия. Но расчеты показывают [77, 152], что и в зтом случае наибольшие напряжения возникают в середине цепи. Механическая энергия для возбуждения механокрекинга должна подводиться к полимеру с наименьшими потерями. Способ ее подведения и распределения по объему зависят от физических свойств, а следовательно, и химической природы полимера. Оценка распределения подведенной механической энергии по цепи еще более затруднена в случае сравнительно высокочастотных ударных воздействий. Современное состояние наших представлений о полимерах не позволяет однозначно судить о распределении механической энергии по объему, да еще при ударном воздействии. [c.62]

    Тот факт, что кислород и в гомеополярных соединениях никогда не проявляет валец,тности больше двух, с точки зрения теории атомной связи объясняется следуюпщм образом в атоме кислорода имеется шесть внешних электронов, находяш ихся на энергетическом уровне с главным квантовым числом п = 2. Согласно принципу Паули (см. стр. 145 и сл.), на таком уровне может находиться максимум восемь электронов. Так как обычно каждая гомеополярная связь образуется парой электронов, для которой каждый из связанных атомов представляет один электрон, то при образовании двух главных валентностей число внешних электронов атома кислорода доходит до восьми, т. е. до максимально возможного числа. Чтобы образовалось более двух валентных связей, по крайней мере один электрон должен подняться с уровня с главным квантовым числом 2 на уровень с главным квантовым числом 3. Как следует из спектральных термов кислорода, для этого надо затратить очень большую энергию, а именно около 210 ккал г-атом. В атомах аналогов кислорода, наоборот, ни одному электрону не надо подниматься на уровень с большим главным квантовым числом, чтобы стало возможным образование более двух гомеополярных главных валентных связей, так как в силу большего значения главного квантового числа внешние энергетические уровни этих атомов могут содержать больше восьми электронов. Впрочем, и в атомах гомологов кислорода, чтобы они проявили валентность больше двух, электроны должны быть подняты на более высокий энергетический уровень, но не с большим главным [c.737]

    Молекулярное сцепление усиливается с ростом степени полимеризации, поскольку удлинение цепей сопровождается увеличением числа контактов между ними. Свойства, характерные для полимеров, обычно возникают, когда длина молекул превышает определенный предел, выше к-рого происходит вначале резкое, а затем все более медленное нарастание прочности полимера. При достаточно большом числе межцепочных контактов суммарная энергия межмолекулярного сцепления может превзойти энергию внутримолекулярных (валентных) связей между атомами главной цепи. В этом случае дальнейшее удлинение цепи не приведет к росту когезионной прочности материала. К. линейного полимера, как и трехмерного, будет обусловлена гл. обр. химич. связями. Разрушение такого материала под нагрузкой при отсутствии механич. дефектов структуры произойдет с разрывом молекулярных цепей по наиболее слабым валентным связям. Максимальная прочность высокоориентированных полимеров обычно достигается при числе молекулярных звеньев в цепи 600—800. Необходимая степень полимеризации м. б. и выше, если макромолекулы не ориентированы, содержат длинные ответвления и не имеют групп с высокой энергией К. [c.522]

    Последующее перераспределение и частичное рассеяние энергии приводит к возникновению первичного свободнорадикального состояния, которое может сопровождаться обрывом цепи. Заметим, однако, что данных, касающихся конкретной природы этого мало изученного промежуточного состояния, практически нет. Наиболее типичным и хорошо изученным последствием первичного акта является образование свободных радикалов, поэтому в дальнейшем под механоинициированием следует понимать возникновение свободных радикалов в полимерах под действием механических сил. Наиболее распространенным, важным и изученным последствием мехаяоинициировання является механокрекинг с разрывом главных валентных связей в полимере. Другие последствия возникающих свободнорадикальных состояний можно рассматривать как осложнения этого основного лроцесса. [c.16]

    Состояние диссоциации воды зависит также от растворенных в ней кислот и оснований. Гидратированный протон, который обычно обозначается Н+ и называется ионом пгдрония, имеет, как уже указывалось, большую энергию гидратации. Это указывает на участие главной валентной связи, и гидро-ний-ион имеет структуру [c.193]

    Тот факт, что кислород и в гомеополярных соединениях никогда не проявляет валентности больше двух, с точки зрения теории атомной связи объясняется следующим образом в атоме кислорода имеется шесть внешних электронов, находящихся на энергетическом уровне с главным квантовым числом и = 2. Согласно принципу Паули (стр. 130 и сл.), на таком уровне может находиться максимум восемь электронов. Так как обычно каждая гомеополярная связь образуется парой электронов, для которой каждый из связанных атомов предоставляет один электрон, то при образовании двух главных валентностей число внешних электронов атома кислорода доходит до восьми, т. е. до максимально возможного числа. Чтобы образовалось более двух валентных связей, по крайней мере один электрон должен подняться с уровня с главным квантовым числом 2 на уровень с главным квантовым числом 3. Как следует из спектральных термов кислорода, для этого надо затратить очень большую энергию, а именно около 210 ккал г-атом. В атомах аналогов кислорода, наоборот, ни одному электрону не надо подниматься на уровень с ббльшим главным квантовым числом, чтобы стало возможным образование более двух гомеополярных главных валентных связей, так как в сипу большего значения главного квантового числа внешние энергетические уровни этих атомов могут содержать больше восьми электронов. Впрочем, и в атомах аналогов кислорода, чтобы они проявили валентность больше двух, электроны должны быть подняты на более высокий энергетический уровень, но не с большим главным квантовым числом, а всего лишь на уровень с большим побочным квантовым числом, а именно на -уровень. Если образуются две валентные связи, такого перехода электронов не происходит, поскольку, как следует из спектров, и у кислорода и у его аналогов основному состоянию атомов соответствует триплетный терм ( Рг)-Это значит, что атомы кислорода и его аналогов в основном состоянии содержат два неспаренных электрона. Следовательно, они могут проявлять валентность два, не требуя какой-либо энергии возбуждения, кроме энергии, необходимой для распада молекул на атомы, тогда как для проявления ими высших валентностей такая энергия возбуждения необходима. Отсюда понятно, почему в чисто гомеополярных соединениях и аналоги кислорода проявляют в основном валентность 2. [c.660]

    Ван-дер-Ваальса действуют вдоль оси С, где наиболее короткое расстояние между гидроксильными группами параллельных цепей превышает 2.5 А. Энергия водородной связи оценивается в 5 ккал/моль, энергия вандерва-альсовских сил в 2—3 ккал/моль, а энергия главных валентностей в связи С — О — С в 80—90 ккал/моль. Если учесть, что число водородных связей между отдельными макромолекулами целлюлозы может достигать [c.436]

    Частично из-за потребности в монохроматическом излучении возникли два раздела фотоэлектронной спектроскопии. Рентгеновская фотоэлектронная спектроскопия, сокращенно обозначаемая как РФС или ЭСХА (электронная спектроскопия для химического анализа), использующая рентгеновские лучи в качестве источника ионизирующего излучения, изучает в основном электроны оболочки (т.е. невалентные электроны). Создание этого метода приписывают Сигбану и сотр. [27]. В ультрафиолетовой фотоэлектронной спектроскопии (УФС) используют ультрафиолетовое излучение, имеющее более низкую энергию, и, таким образом, исследуют энергии связи валентных электронов. Обязанная своим развитием главным образом Тернеру и его сотрудникам [28], УФС предназначалась не только для измерения энергий связывания валентных электронов, но и для наблюдения за возбужденными колебательными состояниями молекулярного иона, образующегося в процессе фотоионизации. [c.331]

    Вернер ввел представление о главной н побочной валентности. По Вернеру, в комплексе К2[Р1С1а] четыре иона хлора присоединены за счет главной валентности, а два — за счет побочной , в Кз[Ре -иона за счет главной 11 3 — за счет побочной . Аналогично и в других координационных соединениях. Такое подразделение валентности на главную и побочную оказалось необоснованным, и Вернер впоследствии от него отказался. Было доказано, что энергия связи всех шести ионов С1 в [Р1С1о) одинакова, это подтверждалось и в других комплексах. Природа комплексообразо-вания оказалась весьма сложной н не была раскрыта в теории Вернера. [c.225]

    Ar]ii 5 равна всего 0,26 эВ, а для марганца переход [Ar]i/i - [Aг]главных групп энергия диссоциации в подгруппе S , Y, La растет от DoiS ) = 1,648 эВ до i>o(La2) = 2,515 эВ энергия возбуждения ds -xfis падает от 1,43 до 0,33 эВ. Это наглядное, но не вполне строгое объяснение в рамках метода валентных связей. [c.125]

    Несколько особняком стоит самостоятельный раздел физико-химической механики, рассматривающий влияние механических воздействий в твердых телах на течение химических и физико-химических процессов. Большой интерес представляют превращения химической энергии в механическую и обратно, например в процессах мышечной деятельности. Эта область, получившая название механохимии, занимается в основном высокомолекулярными соединениями, в связи с их высокоэластическими свойствами, связанными с гибкостью длинноцепочечных маркомолекул. Кроме того, механическое разрушение в полимере всегда связано с местной деструкцией, т. е. химическим разрушением — разрывом цепей главных валентностей, которое энергетически более выгодно вследствие больших размеров макромолекулы [c.211]

    Все сведения о строении и свойствах объектов химии (молекул, радикалов, комплексов, кристаллов и т. п.) в принципе могут быть получены решением уравнения Шрёдингера для соответствующих, систем ядер и электронов. Однако точное решение уравнения Шрёдингера для всех интересующих химию систем — молекул, радикалов, комплексов и т. п. — наталкивается на практически непреодолимые математические трудности Поэтому квантовая химия, как правило, использует приближенные расчетные методы, а также по-луколичественные и качественные. Даже получаемая квантовой химией качественная информация о строении и свойствах веществ имеет принципиальное значение для химии. При разработке таких приближенных методов основываются не только на математических соображениях (при подборе вида исходной волновой функции), но и на фактическом материале химии. Квантовая химия в основном рассматривает стационарное состояние системы из электронов и ядер (входящих в состав молекулы, радикала и т. п.), для которого характерен минимум энергии. В настоящее время главная заслуга квантовой химии заключается в раскрытии природы химической связи. Наибольшее распространение получили два квантово-химических способа приближенного расчета систем из ядер и электронов, отвечающих химическим объектам, — метод валентных связей и метод молекулярных орбиталей. В обоих ме- [c.88]

    Высокоэластическое состояние полимеров обусловлено гибкостью длинных цепных молекул и характеризуется свойством цепных молекул быстро изменять свою форму под действием внешних сил. Изменения формы цепных молекул связаны как с изменением энтропии, так и внутренней энергии полимера. Гибкость полимерных молекул зависит от наличия в цепях главных валентностей простых связей, способных вращаться друг относительно друга. Число возможных конформаций цепных молекул, возникающих в процессе самодиффуз-ного перемещения участков молекул, ограничено взаимодействием молекул. Тепловое движение вызывает превращения одних конформаций в другие, причем частота этих превращений зависит от величины потенциальных барьеров вращения и интенсивности теплового движения. [c.111]


Смотреть страницы где упоминается термин Энергия главных валентных связей: [c.22]    [c.19]    [c.24]    [c.190]    [c.228]    [c.16]    [c.51]    [c.436]    [c.330]    [c.199]    [c.169]    [c.183]    [c.112]    [c.366]    [c.33]    [c.7]    [c.118]   
Механохимия высокомолекулярных соединений (1971) -- [ c.37 ]




ПОИСК





Смотрите так же термины и статьи:

Валентности главные

Связь валентная

Связь связь с энергией

Связь энергия Энергия связи

Энергия связи

Энергия связи, Валентность



© 2025 chem21.info Реклама на сайте