Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связь химическая водородна

    Атом водорода, соединенный с атомом сильно электроотрицательного элемента, способен к образованию еще одной химической связи. Эта связь называется водородной. Наличие водородных связей приводит к заметной полимеризации воды, фтороводорода, многих органических соединений. Например, [c.70]

    Молекулы веществ, находящиеся в твердом, жидком и газообразном состоянии, взаимодействуют друг с другом с разными по энергии силами — силы Ван-дер-Ваальса, водородная связь, химическая связь и др. Такое взаимодействие определяет конденсированное состояние вещества. Эти силы приводят к появлению в жидкостях и газах сольватов и ассоциатов, обусловливают диссоциацию молекул и других частиц в любых агрегатных состояниях вещества, они же характеризуют появление структуры (полиэдры, ансамбли полиэдров или кластеры) в веществе в разных его агрегатных состояниях, определяя аморфную или кристаллическую структуру. Межмолекулярное взаимодействие частиц в системе приводит к отклонению их свойств от идеальных. Такие системы называют неидеальными или реальными. Свойства индивидуальных реальных систем (веществ в чистом виде) могут быть рассчитаны с помощью уравнений состояния вещества. Этих уравнений в литературе приведено несколько сотен. Свойства же смесей расчету пй уравнениям состоянию не поддаются. Это определяется сложностью изменения свойств смесей с изменением их состава. [c.220]


    Рассмотрим взаимосвязь поверхностного натяжения со структурой молекул. В простейшем случае, когда силовые поля молекул жидкости симметричны , химических связей (типа водородных) между молекулами граничащих фаз не образуется, жидкости практически не смешиваются (низкое давление насыщенного пара в системе жидкость — газ), а определяется лишь разностью полярностей [c.433]

    В соответствии с условием приближенного вычисления силу кислоты можно характеризовать величиной константы, которая выражает общую энергию химической связи обоих водородных ионов с анионом 5 ". Иначе говоря, для приближенного расчета можно представить диссоциацию кислоты следующим образом  [c.40]

    Как показал анализ ИК-спектров, при образовании водородных связей происходит пере распределение электронной плотности взаимодействующих молекул. Таким об разом, Я-связи — химическое взаимодействие и параметры ее не могут быть описаны достаточно строго с помощью свойств молекул. [c.13]

    Катализатор активно, за счет химических связей (ковалентных, водородных) или электростатического взаимодействия, участвует в элементарном акте реакции. Он образует либо промежуточное соединение с одним из участников реакции (многостадийный процесс), либо активированный комплекс со всеми реагирующими веществами (одностадийный процесс). После каждого химического акта он регенерируется и может вступать во взаимодействие с новыми молекулами реагирующих веществ. [c.291]

    Атом водорода в полученном димере связан с двумя атомами фтора одной ковалентной связью и одной водородной связью. Энергия водородной связи составляет 8—40 кДж/моль, т. е. обычно больше энергии межмолекулярного взаимодействия, но значительно меньше энергии ковалентной связи. Водородная связь имеет весьма широкое распространение. Она встречается в неорганических и органических соединениях. Водородная связь иногда определяет структуру вещества и заметно влияет на физико-химические свойства. Важную роль играет водородная связь в процессах кристаллизации и растворения веществ, образования кристаллогидратов, ассоциации молекул и др. Водородная связь обусловливает отклонение свойств некоторых соединений от свойств их атомов. Примером полимерных ассоциатов может служить фторид водорода  [c.68]

    С проблемой электрохимического генератора связана проблема водородной энергетики, в которой превращение химической энергии в электрическую будет осуществляться в электрохимическом генераторе. Электрохимические генераторы пока еще относительно дороги. Для широкого их применения ведутся работы по изысканию более дешевых и активных катализаторов электродов. [c.363]


    Какая химическая связь называется водородной Между молекулами каких веществ она образуется Почему НгО, имея меньшую молекулярную массу, плавится и кипит при более высоких температурах, чем ее аналоги  [c.381]

    Характеристика водородной связи. Энергия водородной связи лежит обычно в пределах 10-ь40 кДж/моль (3-ь ккал/моль) и занимает промежуточное положение между энергией вандервааль-сового взаимодействия (доли кДж/моль до 15 кДж/моль) и энергией типичных химических связей (сотни кДж/моль). [c.128]

    Твердые растворы с ограниченной растворимостью образуются как за счет насыщенных и пространственно направленных химических связей (локализованная ковалентная связь, межмолекулярная водородная связь), так и за счет различия химической структуры компонентов. Например, это происходит тогда, когда различие в размерах атомов при образовании твердых растворов с ограниченной растворимостью превышает 8—15 %. [c.221]

    Макромолекулы белков в нативном состоянии имеют спиралевидную конфигурацию, чем резко отличаются от всех синтетических полимеров. Спиральная конфигурация белковых молекул со множеством внутримолекулярных химических, водородных, ионных и других связей придает всей молекуле определенные механические свойства,— значительную жесткость и упругость. Так, А. Г. Пасынский [c.237]

    Необходимо отметить отличия в характере химической связи боранов, углеводородов и силанов. Если в углеводородах и силанах между атомами действуют ковалентные связи, то в бороводородах, наряду с ковалентными связями, проявляются водородные связи (отмечены пунктиром)  [c.442]

    Особое взаимодействие, промежуточное между вандервааль-совым и химическим — водородная связь. Она образуется между атомом водорода некоторой группы ХН (гидроксильная, карбоксильная группа, амино- и амидогруппы и др.) и протон-акцепторной группой X (кислород гидроксильной, карбонильной и карбоксильной групп, азот амино- и амидогрупп, фтор молекулы НР и др.). Обозначение X —Н У показывает, что атом Н прочно связан с группой X и менее прочно с группой У (несимметричная водородная связь, возникающая между нейтральными молекулами) .  [c.123]

    Изобразите атомно-орбитальную модель молекулы метиламина. Укажите тип гибридизации атомов азота и углерода. Охарактеризуйте полярность имеющихся химических связей. Сравните водородные связи аминов и спиртов. [c.72]

    Сравнение длин связей, например для муравьиной кислоты, показывает, что ковалентная связь в исходной молекуле мономера испытала деформацию. Ее длина увеличилась от 0,097 в мономере до 0,107 нм в димере. Большее или меньшее удлинение связи Н—X и ее разрыхление наблюдается и в других веществах. С другой стороны, укорочение межатомного расстояния Н. .. V упрочняет водородную связь. Энергия водородной связи невелика и лежит в пределах 8—40 кДж. Энергия этой связи примерно в 10 раз больше энергии ван-дер-ваальсового взаимодействия и на порядок меньше энергии ковалентной связи. Так, энергия водородной связи Н. .. Р равна 42 кДж, Н. .. О 21 кДж, Н. .. N 8 кДж. Водородная связь проявляется тем сильнее, чем больше относительная электроотрицательность и меньше размер атома-партнера. Поэтому она легко возникает с атомами неметаллических элементов второго периода Периодической системы и в меньшей степени характерна для хлора и серы. Несмотря на малую прочность водородной связи, она определяет иногда структуру вещества и существенно влияет на его физические и химические свойства. Благодаря водородным связям молекулы объединяются в димеры и более сложные ассоциаты, устойчивые при достаточно низких температурах. Ассоциаты могут представлять собой одномерные образования [c.138]

    Водород принято считать одновалентным, но это не полностью отражает способность водорода соединяться с другими атомами. Атом водорода, имеющий сильную химическую связь с каким-либо атомом X, часто может образовывать вторую химическую связь с другим атомом или группой атомов Y. Обычно эта вторая связь намного слабее первой. Чтобы различить их, слабую связь называют водородной или Н-связью и обозначают пунктиром (X—H...Y). Однако бывают случаи, когда обе связи водорода различаются мало или даже одинаковы. Таковы, например, связи в ионе [FHF] . [c.56]

    Множество водородных связей наблюдается также внутри белковых молекул, молекул крахмала. Водородная связь менее прочна, чем другие виды химической связи. Наличие водородных связей между молекулами замедляет скорость их химического взаимодействия. Впервые на существование в молекулах некоторых веществ водородных связей указал Н. Н. Бекетов. Более детально этот тип межмолекулярной связи изучил М. А. Ильинский (1887). [c.69]

    Электронное строение органических соединений возникает в результате образования химических связей нескольких типов ковалентной а-связи, ковалентной л-связи, сопряженной я,тс- и и,л-связи, ароматической п-связи, донорно-акцепторной (координационной) о- или п-связи, включая водородную связь. Образование химической связи между атомами приводит к превращению атомных орбиталей в молекулярные орбитали (МО). Эти МО могут быть локализованными (закрепленными) между двумя атомами или же делокализованными между тремя или большим числом атомов. [c.44]


    Взаимодействие между альбумином и лекарствами осуществляется за счет действия межмолекулярных сил, которые проявляются в изменении некоторых физических и физико-химических свойств молекул, образующих комплекс. Величина энергии связи комплекса не превышает 8—10 ккал/моль, что указывает на существование слабых связей между макромолекулами и лекарствами. К таким связям относятся водородные, гидрофобные и ионные (рис. 10). [c.231]

    За счет водородной связи, химического сродства и др. ш/шШ/ШиА Хемосорбционная хроматография [c.19]

    Донором или акцептором водорода может быть как растворитель, так и неподвижная фаза. С точки зрения легкости образования водородных связей химические соединения можно разделить на 5 основных групп [21], в каждой из которых вещества распределены по убыванию прочности связи. Например  [c.26]

    За счет водородных связей, химического сродства и др. Хемосорбционная [c.6]

    Из этих данных ясно, что соединения жирных кислот и аминов, анионная и катионная части которых связаны слабой водородной связью, обладают невысокой полярностью и характеризуются низкой стабильностью они разлагаются при 125 °С и ниже. Эти соединения, как правило, высокоэффективны по отношению к черным металлам, но вызывают повышенную коррозию цветных металлов. Соединения сульфокислот и карбамида (БМП), а также соединения алкенилянтариого ангидрида и карбамида более полярны и значительно более термостойки, что является следствием образования химической связи между анионной и катионной частями их молекул. [c.306]

    Водородная связь характеризуется промежуточным характером между ван-дер-ваальсовыми взаимодействиями и химической связью. Отличие водородной связи от ван-дер-ваальсовых взаимодействий состоит в пространственной локализации связи [c.95]

    Водородная связь. В тех случаях, когда водород соединен с сильно электроотрицательным элементом, он может образовать водородную связь, которая является промежуточной между химической и меж-молекулярной. Эта связь обусловлена тем, что смещение электрона от атома водорода превращает его в частицу, не имеющую электронов, не отталкивающуюся электронами других частиц, т. е. испытывающую только притяжение. Водородная связь проявляется тем сильнее, чем больше электроотрицательность атома-партнера и чем меньше его размеры, поэтому она характерна для соединений фтора и кислорода, в меньшей степени — для азота и еще в меньшей степени — для хлора и серы. Соответственно меняется и энергия водородной связи. Благодаря водородным связям молекулы объединяются в димеры, полимеры и ассоциаты. Ассоциация приводит к повышению температуры плавления и температуры кипения, изменению растворяющей способности и т. д. Водородная связь образуется очень часто, и объясняется это тем, что молекулы воды встречаются повсеместно. Каждая из них, имея в своем составе два атома водорода и две необобществленные электронные пары, может образовать четыре водородные связи. [c.237]

    Водородная связь. В образовании водородной связи обязательно принимает участие атом водорода. Это взаимодействие является как бы промежуточным по величине энергии между валентной химической связью и ван-дер-ваальсовыми связями. Схематически водородную связь изображают тремя точками. [c.33]

    Спиральные макромолекулы благо даря большому количеству внутримо лекулярных химических, водородных и других связей жестки..Многие поли меры имеют разветвлегтые макромо лекулы (крахмал, гликогё и н.екото рые другие полисахариды).  [c.184]

    Первая часть посвящена теории межмолекулярных сил. Теория межмолекулярных взаимодействий в неэлектролитах в течение многих лет выдвигала на первый план дипольные и дисперсионные силы. Недооценивалась роль реактивного взаимодействия полярных молекул, весьма существенная в жидких средах. При описании слабых сил химического типа обычно огра1шчивались некоторыми, наиболее ярко выраженными случаями образования водородной связи. Но водородная связь — лишь одна из бесконечного множества форм слабых химических взаимодействий, сопровождающихся перераспределением электронной плотности. В последние десятилетия изучение этих взаимодействий стало особенно интенсивным. Рассказать о них необходимо потому, что их исследование имеет большое значение для химии и ряда областей физики. [c.6]

    В большинстве регуляторных систем растений и животных катализ осуществляется глобулярными белками, которые носят название ферментов. Высокая химическая специфичность ферментов связана отчасти с уникальной макроструктурой этих полимеров. Сложность общей структуры белков можно оценить на примере фермента рибоиуклеазы (рис. 25-12). В то время как вторичная структура белков определяется только водородными связями, многочисленные изгибы полипептидной цепи, придающие глобулярным белкам третичную структуру, зависят не только от пептидных связей и водородных связей между амидными группами, но и от других типов связей, а именно а) дисульфидных связей в цистине б) ионных связей, в которых участвуют дополнительные аминогруппы или карбоксильные группы в) водородных связей и г) гидрофобных взаимодействий (рис. 25-13). [c.410]

    Среди факторов, в значительной степени определяюших физикохимические и технологические свойства нефтяных дисперсных систем, особое место занимают размер и структура дисперсных частиц (в литературе они называются сложными структурными единицами, ассоциатами, везикулами, неоднородностями, флуктуациями и пр.). Механизм и кинетика процессов, приводящих к образованию и преврашению этих частиц, зависят от межмолекулярных взаимодействий в системе (сила Ван-дер-Ваальса, водородные связи, химические взаимодействия и пр.). Регулируя межмолекулярные взаимодействия (через размеры и Сфуктуру дисперсных частиц), можно управлять свойствами нефтяных дисперсных систем. [c.162]

    Равновесная работа, необходимая для нарушения контакта на единицу площади, может включать следующие Слагающие дисперсионную Wm , электростатическую Wg, равную (если в процессе отрыва разность потенциалов U остается постоянной, что, однако, редко реализуется) We = /гоП, где а — поверхностная плотность зарядов двойного слоя. Что касается гетерополярной химической связи, типа водородной, то отделить ее от электростатйческой является нелегкой задачей. Доля гомеополярной связи в работе адгезии в зависимости от рода контактирующих фаз может варьировать от нуля до относительно очень высокой. Вклад электростатической составляющей также сильно зависит от природы контактирующих тел через значения плотности зарядов образующегося в контакте двойного слоя. Обычно, оценивая значения а из теоретических соображений, получают заниженные значения Wg, противоречащие тем оценкам значений а, которые можно получить из экспериментов. [c.392]

    Растворимость препаратов лигнина, как и других полимеров, определяется строением и молекулярной массой, а также природой растворителя, главным образом, полярностью. Препараты лигнина могут растворяться в некоторых органических растворителях (диметилсульфоксид, диметилформамид, диоксан и др.), тогда как в других они не растворяются или растворяются частично. Известно, что растворимость вещества зависит от соотношения его полярности и полярности растворителя. Растворимость при этом будет максимальной, когда определенные свойства (способность к образованию Н-связей, химическое строение и т.п.) растворителя и растворяемого вещества близки. Наиболее часто растворяющую способность по отношению к полярным полимерам определяют по энергии когезии и способности к образованию водородных связей. Влияние энергии когезии оценивают по параметру растворимости (см. 7.1). Для лигнина этот показатель оценивается значением порядка 22500 (Дж/м ) . Шурх установил, что растворители с параметром растворимости, сильно отличающимся от этого значения, не растворяют препараты лигнина, а у растворителей с близкими значениями параметра растворимости растворяющая способность возрастает с увеличением способности к образованию водородных связей. Чем сильнее разница как в параметрах растворимости, так и в способности к образованию Н-связей, тем в большей степени должен быть деструктурирован лигнин для перехода в раствор. Полярность растворителя удобно характеризовать диэлектрической проницаемостью, связанной с параметром растворимости эмпирическим уравнением линейного типа. Существуют также попытки связать растворимость лигнина с параметрами, учитывающими донорно-акцепторные взаимодействия в системе полимер-растворитель. [c.412]

    При взаимодействии атомов между ними может возникать химическая связь. Химическая связь осуществляется валентными электронами. Например, у 5- и р-элементов внешними электронами. По современным представлениям химическая связь имеет электрическую природу и возникает благодаря взаимодействию электрических полей, создаваемых электронами и ядрами атрмов. Она осуществляется по-разному. Различают основные тИпы химической связи ковалентную, ионную, донорно-акцепторную, водородную и металлическую. [c.23]

    Соедииеиия включения мочевины. Нормальные алканы, имеющие 7 или более атомов углерода, образуют соединения включения, где молекулы М., связанные водородными связями, образуют спиральную решетку, полость которой заполняется неразветвленными молекулами углеводорода. Молекулы гостя не связаны химическими связями с молекулами хозяина, а просто заполняют каналы. Открытые в 1940 г. Бенгеном [1] подобные комплексы углеводородов с М. изучали Шленк [2], Шисслер, Флиттер [3] и Смит (рентгеноструктурный анализ) [4]. При этом были получены следующие основные данные. [c.316]


Смотреть страницы где упоминается термин Связь химическая водородна: [c.155]    [c.96]    [c.156]    [c.206]    [c.531]    [c.238]    [c.316]   
Учебник общей химии (1981) -- [ c.51 , c.114 ]




ПОИСК





Смотрите так же термины и статьи:

Водородная связь физико-химические характеристики

Водородная связь химический сдвиг

Водородные связи

Изотопные эффекты в физико-химических свойствах жидкостей с водородными связями. И. Б. Рабинович

Кнорре, Н. М. Эмануэль. Водородная связь в кинетике химических реакций

Луцкий. Водородная связь и химические свойства органических соединений. Влияние растворителей на кинетику химического взаимодействия

О природе водородных связей . 30. Другие слабые химические взаимодействия между электрически нейтральными молекулами

Распространенность в природе.— Получение.— Физические свойства.— Химические свойства.— Водородная связь.— Изотопы водорода.— Применения водорода Окисление и восстановление

Связь водородная, Водородная связь

Типы химических связей ковалентная (полярная и неполярная), ионная, водородная, металлическая. Примеры соединений со связями различных типов

Физико-химические свойства и структура соединений с водородной связью Структура растворителя и термодинамические свойства растворов электролитов в воде, метиловом спирте и ацетоне. К П. Мищенко

Химическая водородная

Химическая связь

Химическая связь связь

Химические сдвиги под влиянием водородной связи

Химический связь Связь химическая

Химический сдвиг влияние водородной связ

Эпштейн. Водородные связи и химические свойства органических соединений



© 2025 chem21.info Реклама на сайте