Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты поглощение в ультрафиолетовом

    Ультрафиолетовые лучи и ионизирующее излучение. УФ-свет, рентгеновские лучи и другие виды ионизирующего излучения оказывают на микроорганизмы как подавляющее жизнедеятельность (летальное), так и мутагенное воздействие. Их специфическое действие еще мало изучено. Исходя из совпадения кривой поглощения нуклеиновых кислот и кривой подавления жизнедеятельности клеток при облучении в зависимости от длины волны, а также частоты мутаций в популяции, можно сделать вывод о том, что УФ-лучи действуют в основном на нуклеиновые кислоты. Наиболее эффективны лучи ближней УФ-области с длиной волны около 260 нм (рис. 15.5). Побочные повреждения при этом незначительны. Поражаются главным образом пиримидиновые основания. Например, два соседних тиминовых основания в ДНК могут оказаться ковалентно связанными. Наличие таких димеров тимина служит затем источником ошибок при репликации (рис. 15.6). [c.445]


    В основе модификации спектрофотометрического метода определения суммарного содержания нуклеиновых кислот, разработанной А. С. Спириным, лежит экстракция их из биологического материала горячей хлорной кислотой с последующим определением поглощения экстрактов в ультрафиолетовой области спектра при 270 и 290 нм. Автор предложил также формулу для расчета содержания нуклеиновых кислот. [c.162]

    Ультрафиолетовые спектры белков отличаются сильным поглощением, характеристическим для ароматических фрагментов аминокислот, входящих в их состав фенилаланин, тирозин, триптофан. Эти спектры поглощения используют для аналитического определения остатков указанных аминокислот. Резкий максимум поглощения, характерный для нуклеиновых кислот и нуклеопро-теидов, позволяет определить их содержание в отдельных клетках. [c.361]

    Ультрафиолетовые спектры поглощения определяются возбуждением электронных уровней атомов и молекул и обладают максимумами, положение которых характерно для определенных атомных группировок, сопряженных двойных связей и др, В белках ультрафиолетовые спектры поглощения в основном определяются ароматическими аминокислотами — фенилаланином /--макс— 260 м х), тирозином и триптофаном 280 жр-), причем спектры поглощения могут быть даже использованы для аналитического определения этих аминокислот. Нуклеиновые кислоты и нуклеопротеиды обладают настолько резким максимумом поглощения при 260—265 лр., что при помощи фотографирования в ультрафиолетовом микроскопе легко определить их содержание в отдельных клетках (Брумберг). Зависимость ультрафиолетовых спектров поглощения от pH, сос- тава среды, от образования комплексов с другими соединениями позволяет исследовать изменения состояния растворенных веществ так, по смещению максимума поглощения с 280 до 260—265 м а было обнаружено образование комплекса между белками и полисахаридами (Розенфельд). Линейные полимеры обычно не имеют интенсивных полос поглощения в видимой и ближней ультрафиолетовой областях спектра. [c.61]

    Гипохромизм важен не только сам по себе, как чрезвычайно интересное оптическое явление, но главным образом как феномен, дающий нам в руки простой и удобный метод, который можно использовать в химии нуклеиновых кислот для качественной и количественной оценки процессов ориентации — дезориентации (таких, как денатурация, ренатурация, обратимое образование гомополимерных комплексов или образование гибридных спиралей ДНК — РНК), а также для установления генетической связи между ДНК из различных организмов или из различных клеток одного и того же организма. Все, что требуется для проведения такой оценки,— это спектрофотометр или какой-нибудь другой прибор, с помощью которого можно измерять поглощение света в области 260 ммк. Первый максимум поглощения у всех исследованных видов ДНК располагается в интервале 256—265 ммк вблизи 230 ммк находится минимум, а второй максимум поглощения лежит в далекой ультрафиолетовой области, при 195 ммк. Для обычных двухцепочечных ДНК коэффициент поглощения в расчете на 1 моль фосфора колеблется в пределах 6100—6900, что составляет 18,0—19,0 на 1 мг ДНК (для РНК соответствующая величина близка к 23). [c.144]


    Очевидно, что исчезновение гипохромизма при переходе спираль — клубок, при денатурации, может дать количественную меру а-спиральности белка. Ввиду трудностей, с которыми сопряжены спектрофотометрические измерения в дальней ультрафиолетовой области вблизи 2000 А, этот метод в применении к белкам малоупотребителен. Напротив, он весьма прост и эффективен в случае нуклеиновых кислот при определениях степени спаривания цепей. Длинноволновые электронные полосы поглощения нуклеиновых кислот лежат вблизи 2600 А. Эти полосы, обусловливаемые лл -переходами, характеризуются дипольными моментами, лежащими в плоскостях азотистых оснований. В табл. 5.3 приведены характеристики полос поглощения в спектрах азотистых оснований 71]. [c.288]

    Гипохромизм. Качественно охарактеризовать способность нуклеиновой кислоты поглощать свет можно исходя из спектров поглощения входящих в нее нуклеотидов. Важное значение, однако, имеет тот факт, что истинное поглощение нуклеиновой кислоты в ультрафиолетовой области спектра всегда меньше, чем можно было бы ожидать на основе простого суммирования поглощения отдельных нуклеотидных хромофоров. Это явление носит название гипохромизма. Ниже указаны некоторые общие оптические свойства нуклеиновых кислот. [c.144]

    Этот признак — расщепление полимерного препарата до низкомолекулярных соединений под действием РНК-аз или ДНК-аз (нуклеаз, расщепляющих соответственно РНК и ДНК) — имеет решающее значение и при идентификации выделенного из клетки полимера как нуклеиновой кислоты другие характерные свойства препаратов нуклеиновых кислот — это ультрафиолетовое поглощение с максимумом около 260 ммк и присутствие фосфора и рибозы или 2-дезоксирибозы, что можно легко доказать соответствующими колориметрическими реакциями (обзоры — смЛ ). [c.29]

    Окрашивание белков обычно приводит к их денатурации и не позволяет получать точные количественные данные. В связи с этим были предприняты попытки выявлять белки и нуклеиновые кислоты по поглощению ими ультрафиолетового света. К тому же методы обнаружения нуклеиновых кислот в ультрафиолетовом свете, а белков по флуоресценции, как правило, более чувствительны, чем методы, основанные на связывании макромолекул с красителями. [c.181]

    Свет и особенно его коротковолновая область оказывают большое влияние на развитие микроорганизмов. Действие лучистой энергии на микроорганизмы зависит от дозы и их физиолого-биохимического состояния. Полагают [33], что воздействие связано в первую очередь с изменением структуры ДНК. Во многих случаях спектр действия ультрафиолетовых лучей соответствует спектру поглощения их нуклеиновыми кислотами. Обнаружено, что при денатурации ДНК, облученной высокими дозами ультрафиолетового света (10-2 возникают разрывы между нуклеотидами, а также образуются поперечные сшивки между комплементарными нитями молекулы ДНК. [c.189]

    Дж/моль — энергия разрыва связи С]—С1), что соответствует видимой области света. Действительно, разложение СЬ на атомы С1 может происходить под действием видимого света. Уксусный альдегид и ацетон поглощают только в ультрафиолетовой области спектра и поэтому устойчивы к действию видимого света. Заметим, что бесцветны все белки и нуклеиновые кислоты ( если вещество белковой природы окрашено, как, например, гемоглобин, то это обусловлено поглощением света не белком, а связанным с ним низкомолекулярным соединением, в данном случае гемом). Поэтому эти важнейшие биологические полимеры устойчивы к видимому свету, и фотохимические реакции с их участием начинаются [c.368]

    И ближнюю инфракрасную область. Этот участок в увеличенном масштабе изображен на рис. 13-1 (вторая линия сверху). Свет, достигаю-ш,ий поверхности Земли, занимает узкий интервал от 320 до 1100 нм. Глаз человека способен воспринимать свет в еще более узком интервале 380—760 нм, включающем все цвета радуги. Максимум поглощения ароматических колец белков и нуклеиновых кислот равен соответственно 280 и 260 нм. Хотя свет с такими длинами волн в основном поглощается озонным слоем стратосферы, сквозь атмосферу проходит достаточное количество ультрафиолетовых лучей, чтобы вызвать многочисленные мутации и солнечные ожоги. [c.6]

    Азотистые основания поглощают свет в ультрафиолетовой области спектра с максимумом около 260 нм. Поглощение в ультрафиолетовой области используется для количественного определения нуклеиновых кислот. [c.173]

    Растворы нуклеиновых кислот бесцветны, они не имеют полос поглощения в видимой части спектра, однако в ультрафиолетовой области они имеют характерный максимум поглощения в области 2600 А. В этой же части спектра находится область 2800 А, ультрафиолетовый свет которой поглощается также белками (их циклическими аминокислотами— тирозином и триптофаном). Изучение поглощения в ультрафиолетовой части спектра проводится с помощью спектрофотометра или фотоэлектроколориметра ФЭК-Н, снабженного ультрафиолетовым осветителем. [c.72]


    Облучение. В ряде городов Советского Союза находит применение обеззараживание водопроводной воды с помощью ультрафиолетовых лучей. При этом губительное действие на бактерии оказывают сами лучи, а не какие-либо. токсические вещества, образующиеся в воде. Состав облучаемой воды совершенно не меняется. Механизм губительного действия ультрафиолетовых лучей, имеющих длину волны 200—300 ммк, состоит в поглощении квантов света нуклеиновыми кислотами ядерного вещества. Максимум поглощения их соответствует длине волны 260 ммк. Большим преимуществом этого способа обеззараживания перед хлорированием и озонированием является то, что поражаются в одинаковой степени и вегетативные тела бактерий, и споры. Однако вода при этом способе обеззараживания должна быть достаточно прозрачна и бесцветна. Содержание взвешенных веществ свыше 15 мг/л резко снижает бактерицидный эффект облучения. [c.176]

    Детектор по поглощению в ультрафиолетовой области. Чувствительность детектора 10 —Ю °. моль ио нуклеиновым кислотам. Шкала имеет три области О—100%), 70—100%, 90—100%. [c.357]

    Чистые нуклеиновые кис,лоты содержат около 15% ааота и 10% фосфора. В их состав входят гетероциклические основания, которые обусловливают сильное поглощение в ультрафиолетовой области спектра с максимумом вблизи 260 ммк (см. ниже). На 1 г-атом фосфора в нуклеиновой кислоте приходится 1 моль сахара в рибонуклеиновой кислоте (РНК) это D-рибоза, а в дезоксирибонуклеиновой кислоте (ДНК) — 2-дезокси-В-рибоза. Сахара можно идентифицировать и их содержание определить количественно [c.121]

    Еще в начале нашего века, когда из клеточных ядер выделили нуклеиновую кислоту (ее и назвали от слова нуклеус — ядро), обратили внимание на то, что она поглощает ультрафиолетовые лучи, не очень далекие от видимых. Впоследствии выяснилось, что за это поглощение ответственны азотистые основания — те самые ура-цил, цитозин, аденин, которые уже упоминались. А теперь допустим, что наш химик синтезирует как раз производные урацила. Берет он для начала сам урацил, растворяет точно отвешенные 1—2 миллиграмма в измеренном количестве воды и записывает УФ-спектр. Оказывается, что урацилу присуща сильная полоса поглощения, причем сильнее всего поглощается свет с длиной волны 256 нм (эта величина называется максимум поглощения). [c.151]

    Спехтрофотомгтричесхие методы применимы в тех случаях, когда детектируемые вещества обладают характерным спектром поглощения в видимой или ультрафиолетовой области. В табл. 7.2 приведшы характерные максимумы поглощения для компонентов нуклеиновых кислот (максимальные поглощения для компонентов ДНК и РНК близки), для аминокислот, поглощающих в Сидней УФ-области спектра, и некоторых упоминавшихся в тексте низкомолекулярных соединений. Приведенные значения молярных экстинкций для аминокислот и нуклеотидов дают представление о порядке величин молярных экстинкций биополимеров, поскольку эти значения варьируют в составе биополимеров в не очень широких пределах. При применении спектрофотом ического метода Дйи детекции биополимеров по ходу фракционирования следует иметь в виду, что в используемых водных растворах практически всегда присутствуют различные низкомолекулярные соединения, в первую очередь вспомогательные электролиты, вводимые для создания н жных значений pH и ионной силы. Эти соединения должны быть прозрачны в области поглощения, используемой для деггасции выделяемых биополимеров, тем более что концентрация вспомогательных веществ нередко на несколько порядков превышает концентрацию биополимеров. [c.248]

    Максимум поглощения ДНК в ультрафиолетовой области лежит около 260 ммк, т. е. в области, где поглощают основания нуклеиновых кислот. Но наблюдаемое поглощение нативной ДНК приблизительно на 40% меньше, чем рассчитанное поглощение суммы составляющих ее нуклеотидов. Этот так называемый гипохромный эффект является следствием индуцированного светом диполь-дипольного взаимодействия между параллельно расположенными хромофорами. Гипохромный эффект наблюдается даже в случае небольшого числа пар оснований, если только они соответствующим образом ориентированы. [c.318]

    В связи с обсуждавшимися в этом разделе экспериментами следовало бы отметить, что нуклеиновые кислоты имеют область интенсивного поглощения в ультрафиолетовом свете, так что для анализа равновесного распределения в седиментационной ячейке обычно используют метод поглощения света, который позволяет непосредственно определять их концентрацию. [c.315]

    В Присутствии примесей, поглощающих в ультрафиолетовой области при 260—280 нм, например компонентов нуклеиновых кислот, определение белков по поглощению при 220 нм идентично колориметрическому методу Лоури. Показано, что при этом можно работать в растворах хлористого натрия, какоди-лата, бората, фосфата натрия и калия, сульфата аммония (при концентрации выше 0,1 М), тогда как концентрация гидроокиси натрия, ацетатов, глицина, трис-буфера не должна превышать [c.458]

    При применении оптических систем, регистрирующих степень поглощения света, обработка фотопластинок позволяет получить интегральные кривые седиментации, а при определении изменения показателя преломления получают непосредственно дифференциальные кривые. В настоящее время абсорбционные системы применяют главным образом для исследования весьма разбавленных растворов нуклеиновых кислот и снабжают их кварцевой оптикой для регистрации поглощения в ультрафиолетовой части спектра.— Прим. перев. [c.221]

    Большинство аминокислот практически не поглощает свет в доступной для регистрации области, так что их приходится окра-тпвать нпнгидрином. Этот метод окраски будет подробно рассмотрен в приложении 2, посвященном аминокислотным анализаторам. Пептиды и белки поглощают свет в области 206—215 нм за счет пептидной связи и в широкой области спектра с максимумом вбли- и1 280 нм за счет присутствия в них ароматических аминокислот. Азотистые основания и нуклеиновые кислоты хорошо поглощают вблизи 260 нм. Поэтому не удивительно, что основной метод детектирования в хроматографии белков и нуклеиновых кислот — это регистрация поглощения света в ультрафиолетовой области спектра. Соответствующие приборы мы будем для краткости именовать УФ-детекторами. [c.82]

    Методы количественного определения нуклеиновых кислот основаны на определении содержания составляющих их компонентов азотистых оснований (как правило, спектрофотометрически благодаря поглощению в ультрафиолетовой области спектра) пентоз (с помощью химических реакций, позволяющих отдельно определять рибозу и дез-оксирибозу) и фосфора нуклеиновых кислот. [c.161]

    Электронные переходы полипептидных и нолинуклеотидных цепей и, тем самым, белков и нуклеиновых кислот расположены в ультрафиолетовой области спектра. Полосы поглощения пептидной связи —СО—NH— лежат в области 185—240 им, здесь же и в более коротковолновой области расположены полосы алифатических боковых цепей аминокислотных остатков. Ароматические остатки Трп, Фен, Тир имеют полосы поглощения в области 280 нм. Азотистые основания в нуклеиновых кислотах поглощают свет в области 260 нм. Таким образом, белки и нуклеиновые кислоты бесцветны, они не поглощают видимый свет. [c.140]

    Фотохимическая реакция в каждом данном биологическом соединении проходит под воздействием ультрафиолетовых лучей определенной длины волны. Так, ультрафиолетовые лучи с длиной волны 275. .. 280 нм поглощаются преимущественно белками ультрафиолетовые лучи области 250. .. 260 нм - нуклеиновыми кислотами и нуклеопротеидами лучи с длиной волны 297 нм поглощаются 7-8-дегидрохолестерином (провитамином з) и т.п. Под влиянием поглощенной энергии ультрафиолетовых лучей в организме животных образуются биологически активные продукты - ацетилхолин, гистамин, гистаминоподобные вещества. Кроме того, ультрафиолетовые лучи способствуют денатурации белка и нуклео-протеидов, т.е. изменяют физико-химичес-кое состояние протоплазмы клеток. [c.731]

    Показано [145—150], что, кроме перечисленных химических изменений, при облучении происходит дезаминирование, выделение неорганического фосфата и свободных пуриновых оснований, увеличение азота аминогрупп по Ван-Сляйку, увеличение титруемой кислотности и уменьшение поглощения в ультрафиолетовом свете при 260 личк. При облучении свободных оснований [146] отмечены многие из этих явлении и обнар5"жено еще более резкое уменьщение поглощения в ультрафиолетовом свете. Ясно, что многие из этих изменений влияют на физические свойства дезоксирибонуклеиновой кислоты и особенно на структурную вязкость. Очень слабое дезаминирование, даже без разрывов цепочки кислоты, уже может быть, например, достаточным, чтобы вызвать генную мутацию. Биологические эффекты изменений нуклеиновых кислот при действии излучения не следует объяснять исключительно разрывами цепочек, образованием мостиков или другими коренными изменениями структуры полимера. [c.258]

    Ультрафиолетовые спектры поглощения белков в области между 2500 и 3000 А еще более просты . Поглощение в этой области почти полностью обусловлено индольными боковыми цепями триптофана и фенольными боковыми группами тирозина. Фенильные боковые группы фенилаланина тоже поглощают излучение в этой области, но их молярное поглощение намного меньше. Спектры белков гораздо ближе к спектрам, полученным при суммировании спектров боковых цепей, входящих в состав белка, чем в случае нуклеиновых кислот. Спектр белка обычно слегка смещен (приблизительно на 30 А) в сторону больших длин волн, но отдельные различия так малы, что поглощение в области соответствующих длин волн может быть использовано при анализе числа боковых цепей триптофана и тирозина . Относительно малая разница между спектрами белков и спектрами входящих в них боковых цепей, вероятно, означает, что боковые цепи неупорядочены. Это согласуется с выводами, сделанными ранее на основании рентгенографических данных. Небольшие различия в спектрах, которые нередко наблюдаются, могут просто отражать различие в окружении [c.112]

    После того как РНК и ДНК разделены нри помощи метода Шмидта—Таннгаузера или метода Огура — Розен, количество пуринов и пиримидинов, а следовательно, и количество нуклеиновых кислот в каждой фракции легко определить при помощи кварцевого спектрофотометра, измеряя поглощение в ультрафиолете [21, 38, 39]. При этом следует соблюдать некоторые меры предосторожности [41]. При проведении подобного рода измерений для экстрагирования и осаждения рекомендуется использовать хлорную кислоту, поскольку у нее поглощение в ультрафиолетовой области менее выражено, чем у трихлоруксусной кислоты (последняя характеризуется значительным поглощением в области 260 ммк). [c.104]

    Полезен способ определения тирозина и триптофана, основанный на измерении поглощения ими ультрафиолетовых лучей [160]. У тирозина максимум поглощения расположен при 275 M , у триптофана — при 280 лг,и. Фотометрию в з льтрафио-лете используют также для определения содерл ания этих аминокислот в белках [160]. По интенсивности поглощения в ультрафиолетовой части спектра можно измерять концентрацию белка в растворе [161—165] (поглощение обусловлено в основном присутствием в белке остатков тирозина, триптофана и, в меньщей степени, фенилаланина). При этом обычно требуется поправка на поглощение в ультрафиолете за счет нуклеиновых кислот (их учитывают по величине оптической плотности при 260 ,i) [165]. [c.44]

    Фотохимия изучает процессы, происходящие в молекулах при поглощении ими света. Нуклеиновые кислоты обладают интенсивным поглощением в ультрафиолетовой области спектра, что обусловлено ароматической природой входящих в их состав пуриновых и пиримидиновых гетерощ1клических оснований. Предметом фотохимии нуклеиновых кислот являются изменения, происходящие в молекулах нуклеиновых кислот или их компонентов при облучении ультрафиолетовым светом. [c.615]

    Есть основания предполагать, что мутагенное действие (способность вызывать мутации) различного рода из.пучений и ряда химических факторов связано в первую очередь с изменением ДНК под влиянием этих воздействий. Было найдено, что во многих случаях спектр действия ультрафиолетовых лучей соответствует спектру их поглощения нуклеиновыми кислотами. В некоторых случаях отмечалось наличие двух точек в спектре де11ствия ультрафиолетового освещения, одна из которых соответствовала поглощению ультрафиолетовых лучей белками, а другая — нуклеиновыми кислотами. Таким образом, в иных случаях получалась довольно сложная картина. [c.67]

    Исследовали действие НММ на ДНП в составе интактных спермиев быков и ядер, выделенных из отмытых от семенной плазмы клеток. Для выделения ядер суспензию сперматозоидов в 0,05 М трис-]ЯС1 буфере (pH 8,2), содержащем 0,01% трипсина, инкубировали 1 час на магнитной мешалке нри 20°. Действие трипсина останавливали понижением температуры. Ядра осаждали центрифугированием при 8—10 тыс. д и промывали дважды стандартным раствором Na l с ЭДТА. Для удаления хвостов осадок ядер растирали в стеклянном гомогенизаторе Поттера и многократно промывали трис-ЯС1 буфером, постепенно понижая концептрации с 0,05 до 0,001 М. Сунернатанты анализировали на содержание белка и нуклеиновых кислот по интенсивности поглощения в ультрафиолетовой части спектра на СФ=16. [c.324]

    Для определения положения нуклеиновых кислот, продуктов их распада и их производных на хроматограмме, как показали Маркман и Смит (Магкшапп, 8т11Ь, 1949), можно использовать ультрафиолетовые лучи. Большинство веществ этого класса характеризуется интенсивным поглощением ультрафиолетовых лучей в области 2650 А. Поэтому, если бумажную хроматограмму положить на фотопластинку, то при облучении хроматограммы ультрафиолетовым светом с длиной волны 2650А на фотопластинке получатся после проявления отпечатки, указывающие положение на хроматограмме, разделенных веществ. Участки бумаги, содержащие разделенные вещества, затем вырезают. Вещество из них экстрагируют и подвергают дальнейшему исследованию. [c.169]

    Для быстрых предварительных и сравнительных оценок может быть полезным определение белка по поглощению ультрафиолетового света при Я = 280 ммк, обусловленному входящими в его состав ароматическими аминокислотами. Чувствительность его довольно велика — около 0,2 мг/мл. Однако в присутствии нуклеиновых кислот результаты существенно искажаются. Частично С1 орректировать эти искажения можно, определяя поглощение не только при 280 но и при 260 ммк — в области максимального поглощения света нуклеиновыми кислотами. Существуют специальные таблицы и формулы, позволяющие по этим данным оценить соотношения содержания белка и нуклеиновых кислот. Однако для точных количественных определений малоизученных белков этот метод не может быть рекомендован. [c.34]

    При центрифугировании под действием центробежных сил между слоем воздуха и раствором образуется граница, называС мая мениском. Вместе с тем происходит седиментация растворенных веществ, в результате чего образуется граница раздела между чистым растворителем и раствором белка, которая постепенно смещается ко дну ячейки. Поскольку всегда происходит диффузия высокомолекулярных частиц из раствора в растворитель, то граница раздела не представляет собой плоскости, а всегда несколько размыта. Естественно, что степень поглощения света при переходе от растворителя к раствору будет меняться хотя и круто, но постепенно, равно как и изменение концентрации седиментирующих молекул. Если через такую систему пропустить ультрафиолетовый свет, то это изменение концентрации может выразиться в неодинаковом почернении фотопленки по длине ячейки. В месте границы раздела будет происходить изменение степени почернения пленки от максимального для непоглощающего растворителя до минимального для поглощающего раствора (рис. 39, а). Определяя степень почернения путем микрофотомет-рирования, можно получить кривую распределения концентрации седиментирующего белка. Проведя такие измерения через определенные промежутки времени седиментации, можно получить кривую распределения концентрации вдоль радиуса ячейки. При этом обработка фотопленок, при использовании абсорбционных оптических систем, позволяет сразу получить интегральные кривые седиментации (рис. 39, б). Абсорбционные системы, снабженные кварцевой оптикой, используются чаще всего для исследования разбавленных растворов нуклеиновых кислот и их производных. [c.144]

    Хотя рибонуклеиновые кислоты, несомненно, состоят главным образом из нуклеотидов — производных аденина, гуанина, цитозина и урацила, полная расшифровка состава таких полимеров сопряжена с рядом трудностей. Возможное присутствие очень малых количеств ненуклеотидных компонентов до недавнего времени игнорировалось в значительной степени из-за удобства применения количественных расчетов по поглощению в ультрафиолетовой области. Кроме того, выбор между артефактом и подлинным компонентом не всегда легко сделать устойчивость или неустойчивость комбинации не является критерием ковалентного или нековалентного характера связывания с такими высокомолекулярными полиэлектролитами, как нуклеиновые кислоты. Теперь известно, что в некоторых рибонуклеиновых кислотах концевой аденозиновый остаток этерифицирован по 2 - или З -гидроксильной группе одной молекулой аминокислоты. (Аналогия с ацетильными производными аденозина позволяет предположить, что такие аминокислотные производные являются исключительно З -эфирами). Неоднократно отмечалось существование пептидных производных нуклеиновых кислот, и нельзя полностью пренебрегать возможностью присутствия в рибонуклеопротеидах некоторых относительно нестойких ковалентных связей между белком и нуклеиновой кислотой. Проблема минорных ненуклеотидных компонентов рибонуклеиновых кислот до некоторой степени дискуссионна и может быть разрешена соответствующим точным анализом нуклеиновой кислоты. [c.408]


Смотреть страницы где упоминается термин Нуклеиновые кислоты поглощение в ультрафиолетовом: [c.573]    [c.82]    [c.21]    [c.47]    [c.473]    [c.125]    [c.365]    [c.56]    [c.138]    [c.16]    [c.520]    [c.520]   
Действующие ионизирующих излучений на природные и синтетические полимеры (1959) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты

Ультрафиолетовая поглощения



© 2025 chem21.info Реклама на сайте