Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полос ультрафиолетовом спектре

    В течение многих лет торий применялся в фотоэлектрических элементах (батареях) для измерения широкой полосы ультрафиолетового спектра. Торий используется также в качестве селективного геттера для обеспечения постоянного низкого давления водорода. [c.652]

    Полосы ультрафиолетовых спектров, находящиеся в области, близкой к 2900 А, связаны с одной четвертью длины хромофора (соответствующей 3 сопряженным этиленовым связям). , [c.339]


    Данные о полосах ультрафиолетового спектра, приписываемые НР+, см. [15]. [c.53]

Рис. 13-37. Типичная полоса электронного спектра поглощения с в ближней ультрафиолетовой области. Рис. 13-37. Типичная <a href="/info/105018">полоса электронного спектра</a> поглощения с в <a href="/info/1386656">ближней ультрафиолетовой</a> области.
    Как было указано выше, электронные переходы соответствуют поглощению больших порций энергии, чем при поглощении, обусловленном колебательными или вращательными переходами. Электронные переходы обычно связаны с поглощением видимого и ультрафиолетового света. Подобно тому как колебательные полосы поглощения уширены в результате наложения многих колебательно-вращательных переходов, спектры поглощения в видимой и ультрафиолетовой областях также содержат широкие полосы, а не острые пики вследствие наложения многих электронно-колебательных переходов (рис. 13-37). Полосы электронного спектра поглощения характеризуются длиной волны максимума каждой из них, [c.592]

    Ультрафиолетовые спектры нефтяных сульфидов недостаточно индивидуальны они накладываются на спектры углеводородов. Однако комплексные соединения сульфидов (например, с иодом) имеют достаточно четкие полосы, что и было положено в основу метода. Он весьма точен — можно идентифицировать очень малые количества сульфидов (менее 0,1%). [c.79]

    Анализ ультрафиолетовых спектров поглощения комплексов вторых сульфидов с иодом показал наличие широкой полосы поглощения в области 300—320 нм. Эта широкая полоса свидетельствует о наличии смеси сульфидов с углеводородными радикалами различного строения. [c.167]

    Однако часто ассоциация, установленная электрохимическими методами, не сопровождается изменениями оптических свойств и появлением полос в спектрах, соответствующих молекулам. В этих случаях, вероятно, имеет место электростатическое взаимодействие между ионами при образовании ассоциатов. Однако область поглощения света такими ионами лежит в далекой ультрафиолетовой области, т. е. в области интенсивного поглощения растворителями, что затемняет картину. [c.10]

    Согласно большинству физических и химических методов, четыре связи в молекуле метана эквивалентны (например, ни ЯМР-, ни ИК-спектр метана не содержит пиков, которые можно было бы отнести к разного вида связям С—Н), однако имеется такой физический метод, который позволяет дифференцировать восемь валентных электронов в молекуле метана. Это метод фотоэлектронной спектроскопии [10]. Суть его состоит в том, что молекулу или свободный атом облучают в вакууме ультрафиолетовым светом, вызывая выброс электрона, энергию которого измеряют. Разность между этой энергией и энергией использованного излучения есть потенциал ионизации вырванного из молекулы электрона. Молекула, содержащая несколько электронов различной энергии, может терять любой электрон, энергия которого ниже, чем энергия использованного излучения (каждая молекула теряет только один электрон, потеря двух электронов одной молекулой практически никогда не имеет места). Фотоэлектронный спектр состоит из серий полос, каждая из которых соответствует орбитали определенной энергии. Таким образом, спектр дает прямую экспериментальную картину всех орбиталей в зависимости от их энергии, при условии что энергия используемого излучения достаточно высока [11]. Широкие полосы в спектре обычно соответствуют сильно связанным электронам, а узкие полосы — слабо связанным или несвязанным электронам. Типичным примером является спектр молекулярного азота, показанный на рис. 1.8 [12]. Электронная структура молекулы N2 показана на рис. 1.9. Две -орбитали атомов азота комбинируются, давая две орбитали — связываю- [c.24]


    В спектрах ненасыщенных молекул могут проявляться переходы л - -п и я - л. Один из наиболее легко объяснимых случаев — карбонильное поглощение альдегидов и кетонов. Более сильная полоса поглощения при 180 нм вызвана переходом я - -я, а более слабая при 285 нм — переходом я - -п. Строение остальной части молекулы влияет на интенсивность и длину волны максимума поглощения, однако ряд веществ с одинаковыми хромофорами обычно имеет примерно одинаковый ультрафиолетовый спектр поглощения. Когда хромофорные группы разделены двумя или более одинарными связями, их действие обычно аддитивно, но если они составляют часть сопряженной системы, влияние этих групп усиливается, так как я-злектронная система распространяется по меньшей мере на четыре атомных центра. Соответствующая полоса поглощения обычно сдвинута на 15—45 нм [c.482]

    Спектр КРС отличается от спектра обычного рассеяния появлением по обе стороны от линии возбуждающего монохроматического света двух симметрично расположенных линий - спутников [35]. Вращательно-колебательная полоса поглощения свободной молекулы обычно состоит из двух ветвей, значительно реже - из трех, одна из которых обладает максимальной интенсивностью. Спектры КРС построены проще, чем инфракрасные спектры. В жидкостях и твердых телах основные полосы инфракрасного спектра и спектра КРС, будучи изображены в одинаковой шкале частот, очень похожи. Несмотря на значительно большую интенсивность спектров КРС в ультрафиолетовой области, их наблюдение и использование представляет дополнительные трудности из-за легко возбуждающейся флуоресценции вещества при коротковолновом излучении, а также отсутствия удобного источника монохроматического излучения. По мере приближения частоты возбуждающего излучения к частоте поглощения вещества явление КРС усложняется в пределе должно возникнуть электронное возбуждение, связанное с поглощением падающего излучения, а при соответствующих условиях - и флуоресценция. [c.207]

    В ультрафиолетовом спектре бензола в гексане (рис 2.5) наблюдаются полосы поглощения с Амакс нм (е - [c.26]

    Спектры люминесценции растворов обнаруживаются примерно у половины рзэ, причем наилучшими источниками возбуждения служат искра между Ре-, Ы - или Сс1-электродами и водородная лампа, содержащие в своих спектрах большое количество ультрафиолетовой радиации с длинами волн 210—230 ммк. Таким образом, получены и исследованы спектры люминесценции для Се, Рг, N(1, 5т, Ей, 0(1, ТЬ и Оу [162, 171, 173, 175, 277, 1093]. Они очень просты и состоят из дискретных или сильно размытых полос (от 1 до 7) весьма различной и, чаще всего, небольшой интенсивности. Большинство из них не подходит для аналитического использования, и лишь наиболее интенсивные полосы в спектрах Се, Ей, 0(1 и ТЬ служат основой для количественных определений (см. табл. 38). [c.201]

    Хорошо известно применение лантаноидных сдвигающих реагентов для упрощения спектров ЯМР (гл. 8). Спирты — один из наиболее удобных объектов для применения этой техники. В ультрафиолетовых спектрах спиртов имеются только слабые полосы поглощения, и поэтому эти спектры лишь в редких случаях используются для установления их структуры. [c.181]

    Весьма полезны для идентификации анилинов ультрафиолетовые спектры. Наличие ароматического кольца приводит к появлению интенсивных и довольно хорошо определяемых полос. Надежным подтверждением присутствия в молекуле аминогруппы, связанной с ароматическим кольцом, может служить типичный для таких соединений сдвиг в более длинноволновую область (батохромный сдвиг)  [c.263]

    Формула а-каротина (установленная Каррером в 1931 г.) основывается на следующих экспериментальных фактах при каталитическом гидрировании констатируется присутствие 11 двойных связей. Главная полоса ультрафиолетового спектра поглощения смещена на 120 А в сторону меньших волн по сравнению со спектром -каротина следовательно, не все двойные связи сопряжены. Соединение оптически деятельно и обладает, таким образом, асимметрическим атомом углерода в отличие от -каротина, имеющего симметричное строение. При озонировании получается наряду с героновой кислотой и изогероновая кислота. Отсюда следует, что а-каротин отличается от -каротина тем, что одно из колец является а-иононовым [c.879]

    Например, раствор иода в ароматических соединениях показывает закономерные изменения в ультрафиолетовых спектрах поглощения, которые могут быть связаны с основными свойствами ароматических соедине-НИ11. Так, например, максимум поглощения меняется от 297 ш,м для бензола до 306 для толуола, до 319 для. дi-к илoлa и до 333 для мезнтилена [20, 21]. Предложена теоретическая обработка реакции взаимодействия иода с бензолом, которая, как оказалось, вполне удовлетворительно объясняла полосу поглощения при 297 тц образованием иод-бензольного комплекса [231]. Аналогичное смещение в спектрах наблюдается и у растворов брома и хлора в ароматических соединениях [2, 175].  [c.397]


    Лучше это можно проследить на соединениях, содержащих ароматические радикалы, так как их спектры лежат в области доступной обычным спектральным приборам, и они лучше изучены. Пока атом серы отделен от ароматического хромофора несколькими насыщенными углеводородными звеньями, спектр почти количественно является суммой спектров поглощения алкилсульфида и алкиларила. При непосредственной связи атома серы с ароматическим радикалом тонкая структура спектра, характерная для последнего, исчезает, интегральная интенсивность поглощения резко возрастает. В большинстве случаев изменяется не только форма и интенсивность полос поглощения, но и их положение относительно соответствующих параметров монофункциональных соединений (насыщенных соединений серы и ароматических или непредельных углеводородов). Отсутствие аддитивности в ультрафиолетовых спектрах непредельных (в.том числе ароматических) органических соединений двухвалентной серы свидетельствует о наличии более или менее значительного взаимодействия 1г-связей с неподеленными Зр-электронами атома серы, осложненного, вероятно, влиянием Зй-орбиталей серы. Фрагмент структуры, состоящий из ненасыщенного элемента с присоединенной к нему серой становится новым хромофором, с характерным для него спектром, а присоединенные к нему углеводородные насыщенные радикалы действуют на спектр поглощения как ауксохромы. Вопрос же о характере взаимодействия электронной оболочки атома серы с тг-электронами ненасыщенных хромофоров в настоящее время еще не решен, теория явления стала предметом оживленной дискуссии, по-видимому, еще далекой от завершения. [c.162]

    Так, инфракрасные спектры фракции весьма близки к спектрам фракций конденсированных бициклоароматических углеводородов, выделенных из той же нефти, а также к спектрам индивидуальных замещенных нафталинов. В ультрафиолетовом спектре этой фракции не обнаружено полос, характерных для конденсированных три- и полициклических ароматических систем, но были обнаружены, правда весьма нерезко выраженные и диффузные, полосы поглощения вблизи 30250 см, специфичные для три- и тетразамещенных нафталинов. Из полученных спектральных данных следует, что в наиболее нолициклической части высокомолекулярных углеводородов радченковской нефти, если и присутствуют структуры, содержащие конденсированные полициклические ароматические ядра, то лишь в небольших количествах, которые не удается однозначно определить методами инфракрасной и ультрафиолетовой спектроскопии. [c.295]

    В следующих фракциях появляется полоса, соответствующая валентным колебаниям ароматических связей С = С (6,2 л). Основываясь на ультрафиолетовых спектрах и данных хроматографиче-С1ч01 0 анализа, а также на наличии в инфракрасных спектрах полос, соответствующих С=С и длинным цепочкам из СНг (13,85 ц), автор приписывает соединениям этих фракций строение [c.479]

    Бензольные хромофоры вызывают появление специфических ультрафиолетовых спектров ароматических углеводородов. Основные полосы поглощения ульт-)афиолетового излучения для самого бензола лежат в области 184, 202 и 255 нм [c.134]

    Исследование вторых сульфидов методом криоскопического титрования показало, что более чем 90% вторых сульфидов образуют комплексы состава 1 1с АШгд, Ga l , и иодом и состава 1 2с Sn l4 (рис. 23). Комплексы, образуемые вторыми сульфидами, исследованы спектроскопически. В ультрафиолетовом спектре комплекса вторые сульфиды—Sn l4 обнаружены три полосы поглощения [c.165]

    Полосы на спектрах, расположенные в диапазоне видимого и ультрафиолетового излучения, возникают в результате взаимодействия вращательных, колебательных и электронных переходов и имеют сложную структуру. На рис. А.23 и А.24 приведена упрощенная схема термов двухатомной молекулы. На рис. А.23 дана схема основного состояния с колебательными и вращательными уровнями энергии. Диссоциированная молекула, атомы которой могут принимать любое количество кинетической энергии, соответствует заштрихованным областям (рис. А.23 и А.24). Вращательные термы приведены в другом, значительно меньшем масштабе. На рис. А.24 показаны аналогичные термы электронных переходов возбужденной молекулы. Полоса электронных переходов состоит из ряда полос, соответствующих различным колебательным переходам, а те в свою очередь имеют тонкую структуру, связанную с вращением молекул. Энергию диссоциации молекулы можно определить, установив частоту, при которой полосатый спектр переходит в сплошной, однако при этом следует учитывать энергию возбуждения образовавшихся атомов. Положение колебательных уровней при электронных переходах в молекуле определяется принципом Франка — Кондона при электронных переходах расстоя- [c.66]

    Ультрафиолетовые спектры поглощения обычно имеют две-три иногда пять и более полос поглощения. Для однозначной идентификации исследуемого вещества записывают его спектр поглощения в различных растворителях и сравнивают полученные данные с соответствующими спектрами сходных веществ известного состава. Если спектры поглощения исследуемого вещества в разных растворителях совпадают со сцек-тром известного вещества, то можно с большой долей вероятности сделать заключение об идентичности химического состава этих соединений. Для идентификации неизвестного вещества по его спектру поглощения необходимо располагать достаточным количеством спектров поглощения органических и неорганических веществ. Существуют атласы, в которых приведены спектры поглощения очень многих, в основном орга- [c.246]

    Физические свойства. — У циклических соединений со средними кольцами физические свойства существенно отличаются от нормы. В то время как в ряду гомологических н-алканов с увеличением молекулярного веса происходит равномерное возрастание плотности и уменьшается молекулярная рефракция, у циклоалканов, начиная с Сб, плотность возрастает более быстро н, пройдя через максимум, снижается до уровня плотности высших н-алканов, а кривая молекулярной рефракции имеет точку перегиба. Фосетт и Харрис (1954) исследовали ряд сопряженных циклодиенов-1,3, полученных в основном аллильным бромированием циклоалкенов бромсукцинимидом с последующим дегидробромированием ири помощи хинолина. Они обнаружили, что ультрафиолетовые спектры этих соединений сильно зависят от размера кольца, как это видно из приведенных ниже данных о полэ-жении полос поглощения  [c.86]

    Белки, содержащие свободные сульфгидрильные группы, образуют аналогичные соединения с метилнафтох/иионом, о чем свидетельствует появление в ультрафиолетовом спектре характерных полос поглощения, остающихся после повторной очистки путем переосаждения сульфатом аммония. [c.423]

    Видимый свет, как и рентгеновские, инфракрасные и ультрафиолетовые лучи, является электромагнитным излучением. Скорость света в вакууме постоянна (3 10 м с ) и не зависит от его частоты V или длины волны X. На рис. 2.1 показана часть электромагнитного спектра, представляющая наибольший интерес в современных исследованиях, и приведены принятые названия для разных областей длин волн. Отметим, что видимый свет составляет лшиь очень узкую полосу всего спектра. [c.16]

    УЛЬТРАФИОЛЕТОВЫЕ СПЕКТРЫ. Длинноволновая полоса (с самой низкой энергией) 1,3-бутадиена находится при 217 нм. Она обусловлена переходом электрона с на л -уровень. Этилен, с другой стороны, поглощает при 187 нм. Причина такого различия в спектрах ясна из рис. 13-2. Мы видим, что сопряжение в 1,3-бутадиене уменьшает расстояние между высшей занятой молекулярной орбиталью (ВЗМО) я и низшей свободной молекулярной орбиталью (НСМО) я, а следовательно, уменьшает энергию, необходимую для возбуждения. Это уменьшение энергии, необходимой для возбуждения, продолжается по мере возрастания сопряжения. В самом деле, разность энергий между ВЗМО и НСМО высокосопряженных молекул настолько мала, что эти молекулы поглощают в видимой области спектра. Другими словами, высокосопряженные молекулы часто окрашены (табл. 13-2). [c.501]

    Ультрафиолетовые спектры поглощения определяются возбуждением электронных уровней атомов и молекул и обладают максимумами, положение которых характерно для определенных атомных группировок, сопряженных двойных связей и др. В белках ультрафиолетовые спектры поглощения в основном определяются ароматическими аминокислотами—-фенилаланином 260 >/а), тирозином и триптофаном 280 причем спектры поглощения могут быть даже использованы для аналитического определения этих аминокислот. Нуклеиновые кислоты и нуклеопротеиды обладают настолько резким максимумом поглощения при 260—265 м]х, что при помощи фотографирования в ультрафиолетовом микроскопе легко определить их содержание в отдельных клетках (Врумберг). Зависи-кюсть ультрафиолетовых спектров поглощения от pH, состава среды, от образования комплексов с другими соединениями позволяет исследовать изменения состояния растворенных веществ так, по смещению максимума поглощения с 280 до 260—265 м было обнаружено образование комплекса между белками и гюлисахаридами (Розенфельд). Линейные полимеры обычно не имеют интенсивных полос поглощеття в видимой и ближней ультрафиолетовой областях спектра. [c.61]

    Наиболее ценным свойством ультрафиолетовых спектров алкилфенолов является тот признак, что при наличии пара-заместителя наблюдается больший батохромный сдвиг максимума поглощения. При наличии в орто-положении комплексообразующего центра (ОСН3, СООН, OOR, I, Вг, I) длинноволновый компонент колебательной структуры полосы также расположен выше 280 нм. Несомненный интерес для спектрально-структурных корреляций представляют УФ-спектры ионизированных молекул. Проведен корреляционный анализ констант ионизации алкилфенолов, найденных на основании УФ-спектров нейтральных и ионизированных молекул. Полученные корреляционные уравнения К,—о и физико-химические зависимости, соответствующие определенным молекулярным структурам фенолов, приведены в главе 5. [c.21]

    Началу широкого применения уравнений макроскопической теории способствовали работы Крупна [33], Парседжиан и Нинхзма [34, 35], предложивших ряд упрощенных методов расчета функций е (г ). В этих работах было показано, что для получения вполне надежных результатов можно ограничиться учетом нескольких, основных полос в спектрах поглощения. В первом приближении достаточно учесть дипольную релаксацию, отвечающую области частот а>а 10 рад/с, резонансное поглощение в инфракрасной (о1[, 10 ч- 10 рад/с) и ближней ультрафиолетовой ((Ое — [c.83]

    Переход электрона на более высокий энергетический уровень может происходить между различными колебательными и вращательными подуровнями как нижнего, так и верхнего электронных состояний в результате Б ультрафиолетовой области наблюдаются широкие полосы поглощения. Если инфракрасный спектр дает много острых пиков, то типичный ультрафиолетовый спектр имеет только несколько широких полос. Можно описать такой спектр при помощи положения вершины полосы и интенсивности этого поглощения коэффициент экстинкиии). [c.402]

    Ультрафиолетовые спектры. Лигнин интенсивно поглощает излучение в УФ-области спектра, что обусловлено его ароматической природой. Наличие хромофоров с протяженной системой сопряженных двойных связей приводит также к поглощению и в видимой области спектра. УФ-спектры различных препаратов лигнина обычно очень похожие на рис. 12.1. а приведены типичные спектры хвойных и лиственных лигнинов. Спектральные кривые показывают сильный максимум поглощения при длине волны около 205 нм. Затем поглощение при увеличении длины волны уменьшается, кривые имеют ярко выраженное плечо при 230 нм, минимум около 260 нм и характерный максимум около 280 нм. Дальнейшее плавное снижение в сторону видимой области сопровождается появлением плеча при 300...360 нм. Размытый характер спектра в области электронных переходов объясняется наложением полос поглощения, обусловленных разнообразньши фенилпропановыми единицами. Делаются попытки выделить отдельные полосы поглощения, соответствующие определенным энергиям перехода электронов в отдельных конкретных структурах, с целью количественного анализа химического строения лигнина [29, 38]. [c.414]

    Подтверждение предложенной структуры представилось, когда нашли, что продукт дегидратации, бнсангидрорутилантинон, имеет ультрафиолетовый спектр, почти идентичный со спектром 1,4,6-триокситетраценхинона. Инфракрасный спектр его очень напоминает спектр рутилантинона, так как доминируюш,ими являются полосы поглош,ения хелатированной системы колец А, В, С (примечания 1 и 3 на стр. 183). Остается сильное поглощение хелатированных гидроксильных групп. Ацетилирование дает теперь ожидаемый триацетат, инфракрасный спектр которого хорошо согласуется с характеристическими полосами фенольного ацетата и поглощением антрахинона. [c.181]

    Кривая зависимости интенсивности поглощения от длины волны или частоты называется просто ультрафиолетовым спектром поглощения. Поскольку 8 может изменяться в очень широких пределах, кривую обычно представляют в полулогарифмических координатах в виде графика зависимости Ige от X. Получающийся спектр может состоять из одной или нескольких полос, причем каждая характеризует различные возбужденные электронные состояния молекулы. Длину волны и оптическую плотность в точке максимума (соответственно Хмакс и 8макс) МОЖНО использовать ДЛЯ составления таблиц но эти цифры сами по себе не дают представления о форме полосы, поэтому, если спектр применяется для установления идентичности двух образцов, целесообразно произвести сравнение самих кривых поглощения. [c.189]

    Смит [129, 130] выделил природный осиновый лигнин с 21,79% метоксилов и выходом 0,55% в расчете на древесину. Этот лигнин дал ультрафиолетовый спектр поглощения, подобный спектру, найденному Бьюкененом с сотрудниками [33]. В 0,01 н. растворе едкого натра лигнин дал весьма хорошо выраженный максимум при 305 пц1, после гидролиза в н. растворе едкого натра переходивший в широкую полосу прн 280 / .1 (см. рис. 22 и 23). [c.236]

    ПОЛОС относительно низкой интенсивности (молярный коэффициент поглощения - экстинкция е - в интервале 1-1СЮ0 л м моль ). Эти полосы обусловлены - -переходами электронов центрального атома. В ультрафиолетовой области спектр содержит несколько интенсивных полос с экстинкцией от 10 ООО до 100 ООО л м моль . Они соответствуют электронным переходам в лигандах и переносу заряда с центрального иона металла на лиганды и наоборот (полосы переноса заряда). Видимая область и ближняя область ультрафиолетового спектра комплексного соединения обусловлены электронными переходами из основного состояния в некоторые возбужденные состояния. Правило отбора говорит, что разрешены только переходы с равной спиновой мультиплетностью, а все другие являются запрещенными. Спиновая мультиплетность определяется уравнением (23 + 1), где Я- суммарный спин электронов центрального атома, который есть произведение спинового квантового числа, равного /2, на число неспаренных электронов центрального атома. Различают триплетное и синглетное спиновые состояния. Так, триплетное состояние характеризуется мультиплетностью 3, т. е. у атома есть два неспаренных электрона, а синглетное состояние - мультиплетностью 1, т. е. у атома нет неспаренных электронов. В комплексном соединении число неспа-ренных электронов зависит от поля лиганда. [c.529]

    Весьма подробно изучены ультрафиолетовые спектры пуринов [2—5]. Наиболее точные данные можно найти в статье [6], которая содержит сводку ранних работ с библиографией. Сопоставление данных ультрафиолетовых спектров пурина, аденина, 6-метоксипурина, 6-хлорпурина, 9-метилгипоксан-тина, 9-этилгуанина и 2,6-диаминопурина позволяет предположить, что электронное состояние простейших замещенных пуринов подобно таковому для бензола. Классификация спектральных полос основана на экспериментальных данных о влиянии изменения поляризации и pH среды на ультрафиолетовые спектры. [c.208]


Смотреть страницы где упоминается термин Полос ультрафиолетовом спектре: [c.85]    [c.279]    [c.509]    [c.695]    [c.242]    [c.72]    [c.179]    [c.205]    [c.349]    [c.349]   
Современная химия координационных соединений (1963) -- [ c.254 ]




ПОИСК







© 2024 chem21.info Реклама на сайте