Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхностные группы на алмазе

    Из приведенных данных но исследованию устойчивости дисперсии алмаза в растворах K I следует, что в зависимости от pH дисперсионной среды и концентрации электролита и, как следствие этого, от состояния поверхности дисперсия алмаза ведет себя либо как лиофилизованная (кислая область), либо как иопно-стабилизированная (щелочная область) дисперсная система, обнаруживая тем самым различную чувствительность к добавлению индифферентного электролита. В зависимости от состояния поверхности частиц алмаза (соотношения числа диссоциированных и недиссоциированных поверхностных групп), возможности образования водородных связей между молекулами воды и поверхностными группами алмаза, а также от концентрации добавленного электролита меняется структура воды в ГС, и, как следствие, соотношение между молекулярной, ион-но-электростатической и структурной составляющими энергии взаимодействия частиц. [c.184]


    В. Поверхностные группы на алмазе [c.229]

    Как известно, устойчивость гидрофильных коллоидов обычно выше предсказываемой теорией ДЛФО, учитывающей молекулярное протяжение и электростатическое отталкивание. Однако лишь в последнее время удалось установить прямую связь между устойчивостью гидрофильных коллоидов и толщиной граничных слоев воды, оцененной независимыми методами. Для дисперсий кремнезема и алмаза экспериментально прослеживается влияние на их устойчивость pH дисперсионной среды и температуры. Причиной этого влияния является изменение дальнодействия структурных сил отталкивания, стабилизирующих дисперсию. Стабилизация дисперсий при низких pH связана с увеличением числа поверхностных ОН-групп, способных к образованию водородных связей с молекулами воды, что ведет к росту сил структурного отталкивания. Повышение температуры вызывает ослабление сетки направленных водородных связей в воде, что уменьшает дальнодействие структурных сил и приводит к снижению устойчивости дисперсий. Наблюдающаяся обратимость температурной зависимости устойчивости свидетельствует об обратимости структурной перестройки граничных слоев. [c.168]

    Из неметаллических элементов наиболее тугоплавки углерод и бор, т. е. элементы П1—IV групп с ковалентной связью. К сожалению, не все перечисленные элементы сохраняют достаточный уровень свойств при высоких температурах. Причина тому — состав окружающей среды. Так, например, алмаз, имеющий самую высокую температуру плавления (4200° С) из всех существующих на земле элементов, при отсутствии защитной атмосферы сгорает при 850—1000° С, а в атмосфере кислорода — при 700—850° С. Пленка окисла на молибдене появляется при 250° С, а при температурах выше 700° С окисел начинает так быстро испаряться, что кусок молибдена буквально тает на глазах. Например, молибденовый стержень диаметром 13 мм при 1100° С через 6 ч будет полностью уничтожен . Среди окислов тугоплавких металлов самую меньшую температуру плавления имеет окисел рения. Он плавится при 300° С и кипит при несколько большей температуре. Кроме безвозвратных потерь (окалина и продукты сгорания или испарения), при длительном воздействии высоких температур происходит своего рода химико-термическая обработка поверхностных слоев, газонасыщение с образованием хрупких соединений. [c.215]

    Уровни Шокли 1939 г.). Шокли первый показал [13, с. 11 ], что поверхностное состояние может появиться в алмазе, кремнии, германии, даже если аир одинаковы внутри и на поверхности кристалла оно появляется в запрещенной зоне. Состояния Шокли представляют собой в обычном смысле свободные валентности на поверхности. Четыре валентных электрона элементов IV группы распределены по четырем атомным орбиталям, если атом изолирован — один по 5-орбитали и три по р-орбитали (см. гл. I). В случае связи с другими атомами обычно рассматривается тетраэдрическая 5р -гибридизация валентных электронов. С учетом спина имеется восемь состояний — четыре из них заняты в связи, у четырех остальных энергия гораздо выше. Если связи состав- [c.449]


    Поверхность алмаза, как и любого другого твердого вещества, можно рассматривать как один из основных дефектов трехмерной структуры кристалла. Обрыв структуры остова алмаза, приводящий к изменению координационной сферы поверхностных атомов углерода, а также высокая энтальпия образования идеальной поверхности способствуют самопроизвольному протеканию процессов, снижающих энергию системы. Одним из таких процессов может быть образование поверхностных функциональных групп. [c.12]

    В заключение этого раздела, в связи с обсуждавшимся выше (раздел 5.1) влиянием окисления или восстановления поверхности алмаза на его электродное поведение, рассмотрим последствия такого окисления на электродную кинетику. Рисунок 34 показывает, как окисление исходно наводороженной поверхности алмаза превращает практически обратимую реакцию в системе Ре(СК) в необратимую это видно по резкому увеличению разности АЕ потенциалов пиков анодного и катодного токов на циклической вольтамперограмме. Интересно, что на кинетику реакций в системе Яи(КН)з окисление не оказывает практически никакого действия реакция так и остается обратимой. Очевидно, что в первой системе (Ре(СК)5 " ) реакция весьма чувствительна к влиянию кислород-содержащих групп на поверхности алмаза [116]. Но влияние этих групп почти полностью устраняется, если окисленную поверхность спланировать с помощью (З-аминопропил)триэтоксисилана. В качестве возможной причины влияния окисления на кинетику электрохимических реакций называется диполь-дипольное или диполь-ионное взаимодействие между поверхностными кислородными диполями и молекулами (ионами) реагентов [180]. [c.59]

    Замечательно, что бензол, не имеющий, в отличие от нитробензола, полярных групп в молекуле, образует граничные фазы на стекле только тогда, если последнее покрыто мономолекулярным адсорбированным слоем нитробензола. Можно полагать, что ориентированный на поверхности стекла монослой нитробензола вызывает своего рода эпитаксиальное действие, распространяющееся в бензоле от слоя к слою и ориентирующее несколько десятков монослоев последнего. Отсюда видно, что состояние поверхности, ее чистота могут играть решающее значение для процесса эпитаксиального наращивания. В дальнейшем нас будут в основном интересовать процессы, обусловленные автоэпитаксией, в условиях, когда затравочный кристалл является метастабильной модификацией.Процесс наращивания алмаза на алмазные затравочные кристаллы назван физико-химическим синтезом, поскольку он основывается на явлениях, изучением которых занимается физическая химия поверхностных явлений. [c.18]

    Сначала целесообразно рассмотреть идеальные плоские грани, образующиеся при делении кристалла вдоль определенной плоскости. Поскольку в простейшей модели молекулярной структуры кристалла атомы имеют вид шаров, структуру идеальной поверхности можно представить как ряд окружностей. Имеется подробный атлас моделей наиболее важных идеальных граней вплоть до восьмого порядка для о. ц. к., г. ц. к. и г. п. у. кристаллических структур (а также для структур алмаза и поваренной соли) [9]. В о. ц. к. и г. ц. к. кристаллах структура поверхностной грани однозначно определяется индексами [hkl) плоскости, вдоль которой делят кристалл. Однако для структур г. п. у., алмаза и поваренной соли это не обязательно. Так, например, хотя в г. п. у. структуре металлов (и структуре алмаза) все атомы химически идентичны, их можно в зависимости от окружения разбить на две группы для каждой плоскости hkl) г. п. у. металла, если сумма 2h+Ak + dl) не кратна шести, образуются две разные грани. [c.111]

    Поверхностная энергия. Твердые тела различаются значениями поверхностной энергии Гиббса, которая тем больше, чем тверже материал и чем выше его температура плавления. Условно все тела подразделяют на две группы с высокой и низкой поверхностной энергией. К первой группе относятся вещества, поверхностная энергия которых выше 500 мДж/м металлы, их оксиды, нитриды, сульфиды, стекло, кварц, алмаз и др. К низкоэнергетическим причисляют вещества с поверхностной энергией менее 500 мДж/м пластмассы, кожу, бумагу, древесину, органические низкомолекулярные вещества. [c.28]

    В органических полимерных носителях в роли структурных групп выступают функциональные группы основной или боковых цепей полимера. У некоторых носителей, например, на основе углерода (графит, алмаз, сажа, активные угли), поверхностные функциональные группы образуются при окислении атомов остова кислородом воздуха. [c.15]

    Следует подчеркнуть, что углеродные материалы (алмаз, графит, угли, технический углерод) в ряде химических реакций ведут себя одинаково. И поэтому их химическое модифицирование осуществляется одними и теми же реагентами. При обработке поверхности жидкофазными окислителями (Н2О2, НСЮ4, НКОз и др.) образуются преимущественно карбоксильные группы при действии газофазных окислителей (кислород, водяной пар) — гидроксильные и карбонильные. Карбоксильные поверхностные группы реагируют с гидроксидами, образуя солеобразные комплексы, а гидроксильные — комплексы алкоголятного типа. [c.122]


    Существование ненасыщенных связей на поверхности алмаза обеспечивает возможность образования различных поверхностных соединений. Взаимодействие атомарно чистой поверхности алмаза с низкомолекулярными соединениями приводит к появлению поверхностных функциональных фупп. Использованием химикоаналитических, спекфоскопических и резонансных методов было установлено существование на поверхности алмаза карбоксильных, гидроксильных, карбонильных, лактонных, эфирных, этильных и метильных групп. [c.12]

    К внутрисферным электродным реакциям, помимо упомянутых в разделе 6.1 окисления гидрохинона и восстановления хинона, относятся и многие реакции окисления органических соединений, в которых межфазный перенос зарядов сопровождается перестройкой или разрушением органической молекулы. Некоторые из них к тому же осложнены адсорбцией реагентов или продуктов реакции на поверхности электрода. На поликристаллических алмазных электродах было исследовано анодное окисление хлорпромазина [85], хлорфенола [193], аскорбиновой кислоты [194, 195], антрахинон-2,6-дисульфоната [196], аминов (последний процесс протекает с участием поверхностных гидроксильных групп, вероятно, связанных с включениями -углерода на поверхности алмаза) [197], тетраметил- и тетрагексилфенилендиамина [198], [c.63]

    Интересно отметить, что расчеты равновесия без учета упругих полей дают достаточно хорошие совпадения р-Г-параметров синтеза при использовании расплавов некоторых металлов переходных групп (на необходимость их применения указывалось еще в работе [16]). Хотя в данном случае речь должна идти не о фазовом превращении графита в алмаз, а о перекристаллизации графита в алмаз. Такое совпадение неудивительно, ведь в расплавах металлов, называемых обычно катализаторами-растворителями, ДСдеф мало. В этом случае при росте кристаллов путем встраивания атомов (молекул) в изломы (за счет атомарной и кинетической шероховатости) химический потенциал частицы в кристалле равен ее химическому потенциалу в растворе. Поэтому при использовании графита в качестве шихты р-Г-параметры области равновесия (индивидуальные для каждого типа расплава) должны быть близки к расчетным значениям в классическом приближении. Однако также хорошо известно, что при понижении температуры (и давления) ниже определенной величины (<1400— 1300 К) никакого совпадения в экспериментальных и расчетных данных не наблюдается, так как число зародышей резко уменьшается и рост алмаза фактически прекращается. Несомненно, в этом случае начннают сказываться такие факторы, как химические и структурные характеристики расплава. О том, насколько важную роль играет структура расплава, свидетельствуют эксперименты по введению в систему роста металлов, слабо взаимодействующих с углеродом, Sb, Sn, Ge, Си. На основании экспериментов можно сказать, что ни изменением относительных растворимостей графита и алмаза, ни изменением поверхностной межфазной энергией (A s) нельзя объяснить экспоненциальный рост порогового давления, начиная с определенных концентраций этих добавок. Ясно, что при расчете области равновесия графит — раствор углерода необходимо учитывать такие факторы, как относительные растворимости и межфазные энергии границ этих фаз, степень отклонения раствора в расплаве от идеального, степень его упорядочения, коэффициенты активности и конфигурации активационных комплексов и др. [c.309]

    Модифицирование поверхности технического углерода, графита и алмаза прививка на ней функциональных групп определенного типа (СНз, С1, СООН или NH ) [99, 103, 241] позволило выяснить роль химии поверхности и структуры остова частиц углеродных наполнителей на термоокислительную стабильность полистирола и его сополимера с, дивинилбензолом, синтезированных в их присутствии. Обнаружено [103, 241], что с ростом энергии адсорбционного взаимодействия и степени прививки полимера, которые увеличиваются в ряду поверхностных функциональных групп H3< I< OOHтермоокислительная стабильность ПС. При наличии на г оверх-ности углеродных наполнителей функциональных групп одного типа термоокислительная стабильность наполненного ПС возрастает в ряду технический углерод < алмаз < графит, что обусловлено наличием в графите я-сопряженных структур, с которыми связаны поверхностные функциональные группы. Это приводит к их более высокой активности в процессах взаимодействия с инициаторами, мономером и образующимся полимером. [c.145]

    Сравнительно недавно Андраде и другие авторы раз. аботали два метода, посредством которых эти трещииы могут быть счеланы видимыми. Первый из них заключается в нанесении на поверАНОСть тонкого слоя металла распылением при нагревании мета.- л собирается в тонкие линии, вновь появляющиеся в одних и те же местах после самой тщательной очистки поверхности, если только её не полировать. Можно предполагать, что этн линии обозначают поверхностные трещины они обычно образуют группы из параллельных линий, причём различные группы нередко пересекаются под прямым углом. После полирования эти трещины исчезают и во многих случаях заменяются новыми, но уже в других местах. Такие лгтии наблюдались на различных сортах стекла и на одной из дв Х разновидностей алмаза. Слюда, прочность которой совпадает с тео- [c.323]

    Наблюдалось хорошее соответствие между нейтрализацией раствором NaH Oa и образованием ацилхлоридов при действии хлористого тионила. Весьма вероятно, что взаимодействие обусловливалось наличием карбоксильных групп на ребрах и углах кристаллов алмаза. Первоначально предполагалось наличие третичных гидроксильных групп на гранях (111) алмаза. Однако существование значительных количеств гидроксильных групп можно исключить, поскольку определение активного водорода методом Церевитинова или обменом с D2O удовлетворительно согласуется с содержанием карбоксильных групп. При напылении металлического калия в высоком вакууме на образцы алмаза и удалении его избытка вакуумной перегонкой образцы необратимо адсорбировали 20 ж5)Сб/100 г калия. При этом преимущественно образовывались кетилы поверхностных карбонильных групп. Количество удерживаемого калия уменьшалось после обезгаживания при 400 и 500°. Значительно меньше калия связывалось с образцом алмаза, обработанным водородом при 800 . [c.231]

    Алмаз также образует поверхностные окислы, гидриды, хлориды и т. д., причем поверхностные окислы содержали незначительное количество водорода. Поэтому следует исключить возможность покрытия поверхности третичными гидроксильными группами. Методом дифракции электронов низкой энергии было обнаружено значительное нарушение структуры алмаза вблизи поверхности. Поэтому более вероятной является связь соседних атомов углерода через эфироподобные мостики. Было показано, что в нормальных условиях поверхностные окислы всегда имеются в алмазе. [c.235]

    Гидрофильными являются все тела, в к-рых интенсивность молекулярных (атомных, ионных) взаимодействий достаточно велика (корунд, карборунд, алмаз и др.). Особенно резко выраженной гидрофильностью обладают минералы с ионными кристаллич. решетками (окислы и их гидраты, карбонаты, силикаты, сульфаты, фосфаты, галогениды, глины, а также стекла). Металлы, полупроводники, а также срганич. вещества, особенно с преобладанием углеводородных групп в молекуле, гидрофобны (парафин, нафталин, далее жиры, воски, битумы идр.). При переходе от щелочных и щелочноземельных катионов к легко поляризующимся катионам (тяжелых металлов и др.), а также в лиотропных рядах ионов с уменьшением их радиуса гидрофильность возрастает. Понятие гидрофильности применимо не только к телам (фазам), у к-рых оно является свойством поверхности, но и к отдельным молекулам, их группам, атомам и ионам. Все полярные группы, входящие в состав поверхностно-активных веществ, обладающие дипольным моментом (—ОН —СООН, —NH2 и др.), являются 1 идрофиль-ными. Именно они увеличивают растворимость в воде, тогда как химически связанные с ними углеводородные радикалы понижают ее. Результатом такого гидрофобно-гидрофильного баланса и является итоговая растворимость вещества в воде. Гидрофильные (в общем случае — лиофильные) тела самопроизвольно образуют коллоиднуле р-ры в воде или в другой жидкости — КО.ИЛОИДЫ, являющиеся предельно высоко-дисперсными термодинамически устойчивыми двухфазными снстема.ми. [c.469]


Смотреть страницы где упоминается термин Поверхностные группы на алмазе: [c.187]    [c.187]    [c.183]    [c.183]    [c.182]    [c.115]    [c.182]    [c.25]    [c.34]    [c.484]    [c.484]    [c.397]   
Смотреть главы в:

Катализ стереохимия и механизмы органических реакций -> Поверхностные группы на алмазе




ПОИСК





Смотрите так же термины и статьи:

Алмаз



© 2024 chem21.info Реклама на сайте